Variance-covariance matrix using matrix notation of factor analysis

Поделиться
HTML-код
  • Опубликовано: 10 дек 2024

Комментарии • 45

  • @luizbezerra9840
    @luizbezerra9840 7 лет назад +2

    Mr. Ben Lambert, you are awesome. Very intuitive material. Thanks a lot.

  • @haffybra
    @haffybra 8 лет назад +65

    Just to make it more clear, the element Xii would be the element (i,i) in the SAMPLE matrix minus the mean of that sample for all individuals.
    I think the beginning of your video was a little confusing. Otherwise the resulting matrix makes no sense.
    Sorry, I just wanted to understand that.

    • @flankechen
      @flankechen 7 лет назад +1

      Thanks! this confuse me as well.

    • @amit4422
      @amit4422 6 лет назад +7

      True Story, I think this post should be pinned so that people understand that Xvi is the sameple observation minus the mean of all data samples belonging to variable v.

    • @sushanu510
      @sushanu510 6 лет назад +15

      4:02 This is the case for standardised variables i.e mean zero and std dev 1.

    • @emmanuelezenwere
      @emmanuelezenwere 5 лет назад +2

      @Rafael Padilla this answers your question. Thanks for pointing this out @sushan upadhyay

    • @bossusan33
      @bossusan33 5 лет назад +3

      This is important !! Otherwise the covariance matrix would make no sense

  • @blueninja42069
    @blueninja42069 2 года назад

    i love you ❤ u saved me from insanity

  • @massive_d
    @massive_d 6 лет назад +19

    they have to be mean normalized first

    • @123XTSK
      @123XTSK 3 года назад

      yes!

    • @mileszhou3378
      @mileszhou3378 2 года назад +2

      on 3:25, he clearly states that when dealing with standardized variables. By that he implies that variables has already been normalized

  • @sairamaditya9575
    @sairamaditya9575 3 года назад

    The diagonal elements of a covariance matrix computed for a linearized
    inverse problem having model parameters m1, m2, m3, m4, m5 are 49, 15, 3,
    200, 40, respectively. The standard deviation (uncertainty) in the estimation
    of model parameters m4 is ________.

  • @HDCalcs
    @HDCalcs 7 лет назад +10

    Shouldn't you divide by (N-1) rather than N since said that its a sample rather than a population?

    • @SrinivasKishanAnapu
      @SrinivasKishanAnapu 6 лет назад +5

      Yes you are right. We need unbaised variance and must devide by (N-1). However for large sample N/(N-1) tends to 1.

  • @mohamedgaber7236
    @mohamedgaber7236 3 года назад +2

    shouldn't we multiply the matrix by (N-1)^-1 instead of (N)^-1 to get unbiased estimate of the variance?

  • @123XTSK
    @123XTSK 3 года назад +1

    The matrix must be for mean =0 for each column. Subract the column mean from respective column elements.

  • @ИльясБатырбеков-й2у

    Thank you very much, Sir!

  • @m.hamzarahid2293
    @m.hamzarahid2293 4 года назад +1

    just one question: Y do we multiply by N inverse and not (N-1) inverse?
    Thanks.

  • @MsKouider
    @MsKouider Год назад

    To get the covarariance matric ; Xnv must be centered !?

  • @imen926
    @imen926 4 года назад

    Excellent and very helpful!

  • @avestaabdulrahman6549
    @avestaabdulrahman6549 4 года назад +1

    Thank you, very helpful!

  • @PedroRibeiro-zs5go
    @PedroRibeiro-zs5go 5 лет назад

    Thanks so much! Your material is GREAT! :) thx

  • @thanhtungdao4975
    @thanhtungdao4975 7 лет назад +1

    Thank you very much Ben. You are awesome :D

  • @tanyachahal1271
    @tanyachahal1271 7 лет назад

    Your videos make life easy :D

  • @hex07ff
    @hex07ff 6 лет назад +1

    Thank you very much!!

  • @regularviewer1682
    @regularviewer1682 6 лет назад +1

    You're my hero

  • @jrM5492
    @jrM5492 5 лет назад +1

    on a m x n matrix A, each row is feature, each column is sample, the covariance matrix of A should be A^T*A or A*A^T?

  • @rexfordnana
    @rexfordnana 8 лет назад

    Excellent presentation, very helpful

  • @GEconomaster112
    @GEconomaster112 10 месяцев назад

    Thamks!!!!

  • @chiaochao9550
    @chiaochao9550 4 года назад +1

    Awesome video! Can I ask why it's divided by N rather than N-1? I can't differentiate these 2 cases.

  • @nikhilnarayane680
    @nikhilnarayane680 4 года назад

    Sir, can you please provide any reading material for reference

  • @atulsrivastava2790
    @atulsrivastava2790 6 лет назад

    Do we need to rescale the X's (for calculating the Cov matrix) if they don't have the same units?

  • @mileszhou3378
    @mileszhou3378 2 года назад

    you have to mean normalize first? if you don't do mean normalization you will get a different result.

  • @dr.suhailnajm
    @dr.suhailnajm 4 года назад +1

    Thanks a lot for such great explanation.
    May I know which tool-software combination used in this tutorial?

  • @matrx4100
    @matrx4100 9 лет назад +1

    very good explanation (Y)

  • @domenicodifraia7338
    @domenicodifraia7338 6 лет назад

    Thank you man

  • @theinstigatorr
    @theinstigatorr 10 лет назад +2

    Thank you

  • @zoolander0700
    @zoolander0700 7 лет назад

    Awesome video, thank you! Also, I think I can hear your watch in the video

  • @capushpak1404
    @capushpak1404 7 лет назад +1

    Thanks a lot

  • @zorglub20770
    @zorglub20770 4 года назад

    the values need to be centered first

  • @faridaahadli1504
    @faridaahadli1504 2 года назад +1

    An awful video. Spent almost 30 mins to somehow derive Var and Cov from the given matrix operation. Thanks to god some comments pointed out that the original matrix has to be mean normalized.

  • @pratikswamy8006
    @pratikswamy8006 6 лет назад

    Thank you