Convergence of a Sequence in a Metric Space Part 1

Поделиться
HTML-код
  • Опубликовано: 6 янв 2025

Комментарии • 11

  • @debendragurung3033
    @debendragurung3033 6 лет назад +2

    0 is not the limit of this sequence in this interval (0,1] because its an open interval. BUT Neither are any point X within it nomatter how close to zero it gets. Because for every X in(0,1], and some ε>0, we cannot find N∈Natural Numbet, for all n>N , (a_n,X)ε.
    will this sequence converge in other interval? like or [-1,+1] by their algebraic definitions.

  • @george527
    @george527 4 года назад

    Went through hours trying to understand! Thank you, sir!

  • @muthumeena1010
    @muthumeena1010 6 лет назад +1

    Love this explanation

  • @michelangelina4790
    @michelangelina4790 6 лет назад

    any advice or help on how to find a metrci for which the sequence 1/n (n being natural numbers) the sequence will converge to a limit that is not 0 ???pls someone heeelp :P

    • @elliotnicholson5117
      @elliotnicholson5117  6 лет назад

      Just replace swap the position of 0 and 3 in the metric space.

  • @محبةالانمي-ت3ل
    @محبةالانمي-ت3ل 8 лет назад +3

    ماكو مترجم عربي 😭😭😭

    • @diariesphysicist3948
      @diariesphysicist3948 6 лет назад

      محبة الانمي اذا لكيتي عربي دزيلي فدوه

  • @pakistanidoll6893
    @pakistanidoll6893 6 лет назад

    Sir your method of teaching is very clear but i am pakistani so can not understand it clearly