Exceptions to the Octet Rule

Поделиться
HTML-код
  • Опубликовано: 8 фев 2025

Комментарии • 144

  • @wbreslyn
    @wbreslyn  7 лет назад +90

    What is most confusing exception to the Octet Rule for you?
    --- Dr. B

    • @naditi1426
      @naditi1426 6 лет назад +7

      Wayne Breslyn
      For me its sulphur nd phosphorus..... I cant understand them at all... That was a nice video... Thanks for being helpful😍😍

    • @baddriver8875
      @baddriver8875 6 лет назад +5

      Does having an expanded Octect affect how the formal charge of the central atom is calculated?

    • @shivareddy6411
      @shivareddy6411 5 лет назад +1

      Does it have any order to put dot

    • @amaan-zd6kt
      @amaan-zd6kt 5 лет назад +1

      Sulphur

    • @adityaa8918
      @adityaa8918 5 лет назад +2

      Wayne Breslyn
      Boron and Aluminium are confusing

  • @matthewhowe8510
    @matthewhowe8510 4 года назад +73

    Wayne, your videos have been extremely helpful during this stressful semester. Thank you so much for your diligence and wonderfully simplistic style, you make every concept so much easier to understand.

    • @wbreslyn
      @wbreslyn  4 года назад +11

      Glad I could help and thanks for the kind words!

  • @pawanbhatta4053
    @pawanbhatta4053 3 года назад +8

    Oh gosh! Finally I have someone for the chemistry.

  • @Sofolio
    @Sofolio 2 года назад +3

    Thanks!

    • @wbreslyn
      @wbreslyn  2 года назад +4

      Thank you very much, it is appreciated! (I just learned how to filter my comments for people who gave Super Thanks. )

  • @nurshaqirin4005
    @nurshaqirin4005 5 лет назад +50

    4:02
    NO (yes!)
    Lmao 😂😂😂

  • @user034
    @user034 Месяц назад +1

    Hypervalence is not due to the electrons being occupied by d orbitals, but to the electronegativity of the elements involved. For example, in SF6, the F atoms, being much more electronegative than the S atoms, attract the electrons from the S atom, so that the S atom is left with fewer than eight electrons in reality.

  • @kimia1664
    @kimia1664 5 лет назад +5

    These are gold, man!

    • @wbreslyn
      @wbreslyn  5 лет назад +1

      Thanks! --- Dr. B

  • @kanivakil198
    @kanivakil198 5 лет назад +18

    2:23 Expanded Octets

  • @pedrosso0
    @pedrosso0 Месяц назад

    All expanded octet compounds seem to be able to be explained through dative bonds; ionic charges.
    SO3: O(-)-S(2+)=O
    |
    O(-)
    XeF4: F-Xe(2+)-F; F(+); F(+)

  • @Udhavbansal1
    @Udhavbansal1 7 месяцев назад +1

    Really thanks sir

  • @hadeerrashad5486
    @hadeerrashad5486 6 лет назад +14

    Thank u very much for making this helpful video!!!

    • @wbreslyn
      @wbreslyn  6 лет назад +3

      No problem, glad I could help with exceptions to the octet rule! --- Dr. B

  • @mariamriad4026
    @mariamriad4026 2 года назад +1

    amazing it was just like magic

  • @recaldepinedasergioesteban9427
    @recaldepinedasergioesteban9427 5 лет назад +2

    Nice video, greetings from Paraguay

    • @wbreslyn
      @wbreslyn  5 лет назад +5

      Thanks!
      I've never been to Paraguay. Perhaps one day... -
      -- Dr. B

  • @guillermo.montoya9825
    @guillermo.montoya9825 3 года назад +1

    Thanks Teacher

  • @dagmawitanteneh3709
    @dagmawitanteneh3709 Год назад

    I like the way you teach & the way you teach is clear & easy to understanding but i can't get some topics in my grade 11 chemistry

  • @venkatasaikiranborra5394
    @venkatasaikiranborra5394 2 года назад +1

    Thank you very much for this video. However I have a few questions:
    1. Boron and Aluminum only require 6 valence electrons to be "satisified" in structure. However, if required could Boron and Aluminum each be able to fit/accept/share an additional 2 valence electrons, or is 6 electrons the maxium either of those will accept?
    2. What elements does the "expanded octet" rule apply to? I think you said in some other video that this rule applies to elements after aluminum (silicon onwards).

  • @ismailmuhammedabdulle3172
    @ismailmuhammedabdulle3172 4 года назад +1

    Thank you! Dr.B

    • @wbreslyn
      @wbreslyn  4 года назад

      No problem! --- Dr. B

  • @afusiongamerz2899
    @afusiongamerz2899 3 месяца назад

    Sir could please make a playlist where I can learn chemistry from scratch 😢
    Btw its really amusing to learn from your videos 💖

    • @wbreslyn
      @wbreslyn  3 месяца назад +1

      These might help!
      www.youtube.com/@wbreslyn/playlists
      All the best in chem!

    • @afusiongamerz2899
      @afusiongamerz2899 3 месяца назад

      @@wbreslyn Its really shocking how you always try to reply to all the comments 🏆
      Btw thanks sir

    • @afusiongamerz2899
      @afusiongamerz2899 3 месяца назад

      @@wbreslyn Sir which playlist should I start from?

    • @softpity2427
      @softpity2427 3 месяца назад

      @@afusiongamerz2899tha atoms playlist is a good start 😊

  • @PK_EDIX_
    @PK_EDIX_ 3 года назад +2

    Sir is their any more exception or only these are all the examples who don't follow octate rule or is their infinity number of exception in octate rule ? Can you tell me sir

  • @blissfulfragrance2511
    @blissfulfragrance2511 7 лет назад +15

    Hey, thank you for making this video!
    I have some doubts though ~
    ∆ *why* can some elements have expanded octets?? Is the only explanation that "the central atom uses its d orbital?"
    ∆ If yes, why can't *any* element use its "d" orbital when its in the center and thus have an expanded octet?
    ∆ I even saw a Lewis structure with Xe having 14 electrons around it. What is the upper *limit* on what an atom can have around it in a Lewis structure?
    I'd be really grateful to anyone who can help, this concept of expanded octets is really bugging me..😥

    • @wbreslyn
      @wbreslyn  7 лет назад +5

      Take a look at this page (it's a way down) where they explain about the d orbitals. Note that it isn't until Period Three that d orbitals are used by atoms.
      chem.libretexts.org/Core/Physical_and_Theoretical_Chemistry/Chemical_Bonding/Lewis_Theory_of_Bonding/Violations_of_the_Octet_Rule
      --- Dr. B

    • @blissfulfragrance2511
      @blissfulfragrance2511 7 лет назад +2

      Wayne Breslyn
      Thank you for replying, first off! I just read the article, Dr B, but I still don't get it.. Please could you just write like a 1 sentence answer each for the 3 questions I have? That way you don't have to waste much time explaining! I'm sorry for troubling you!🙏

    • @jesse5960
      @jesse5960 6 лет назад +11

      blissful fragrance
      The answer to your first question is that yes, electrons fill the d orbitals of the central atom. This is only relevant to atoms in period 3 and onwards due to thes atoms actually having the d orbitals available due the the energy levels that the electrons are found in. For example, Carbons electron configuration is 1s2, 2s2, 2p2 and has 4 electrons in the valence energy level/electron shell. Carbon therefore needs 4 more electrons to fill the valence shell, which is how CH4 is made :D
      If we were to try and expand the octet rule.. adding more electrons would ultimately start filling up the 3s and 3p orbitals, making the electrons in these orbitals the valence electrons rather than adding to the 2nd energy level of the atom. This is because energy level 2 only has one s and one p orbital. Electrons cant just fill the 3d orbital due to the fact that electrons will start filling the next energy level making the 2nd energy level electrons no longer valence electrons... if that makes sense? Atoms in period 1 and 2 cant fill up the d orbital without filling up the previius orbitals (3s 3p and 4s)... so a lot of electrons are going to have to be added to fill the d orbital, which is why group 1 and 2 cant expand the octet rule.
      The larger molecules are a little more complicated ...
      Xe has an electron configuration has of [Kr] 4d10 5s2 5p6 and has 8 valence electrons. Xe can expand due to the fact that it has a 5d and 5f orbital.
      However im unsure if the electrons will try to fill the 4f orbital or if it will just fill the 5d orbital due to the fact thar we are twlking about the octet rule and lewis structures rather than the electron configuration itself... I hope some of this is helpful 😂 chem gets complicater as heck

  • @Grace-li6ts
    @Grace-li6ts 4 года назад +2

    thank you so much!

  • @geremiasgomez861
    @geremiasgomez861 2 года назад +1

    gracias viejito

    • @wbreslyn
      @wbreslyn  2 года назад

      De nada, pero no soy muy veijo!

  • @ranivarahagiri8951
    @ranivarahagiri8951 4 года назад +1

    Thanks dr B

  • @JIMCAALE-so7jr
    @JIMCAALE-so7jr 6 лет назад +2

    Thank you very much for making this helpful video

    • @wbreslyn
      @wbreslyn  6 лет назад +4

      Glad I could help with those exceptions! You might even say the video is "exceptional"...
      --- Dr. B

    • @DrAdityaReddy
      @DrAdityaReddy 4 года назад

      @@wbreslyn 😂😂

    • @wbreslyn
      @wbreslyn  4 года назад

      @@DrAdityaReddy 😎

  • @mantejlamba9608
    @mantejlamba9608 6 лет назад +2

    How does formal charge help determine if the Lewis Structure is the best? Is it basically if the formal charge is zero, then that is the best one?

    • @wbreslyn
      @wbreslyn  6 лет назад +3

      That's the idea, the closer to zero the more likely the Lewis Structure represents the molecule in the real world. Here's a video I did on formal charge that might be helpful:
      ruclips.net/video/-9f4H0puVzc/видео.html
      --- Dr. B

  • @mummiedanser1609
    @mummiedanser1609 5 лет назад +3

    Thanks mayne

    • @wbreslyn
      @wbreslyn  5 лет назад

      No problem, glad I could help with exceptions to the octet rule!

  • @zestycrumbs
    @zestycrumbs 3 года назад +5

    Just so you know, someone did notice that easter egg at 4:03.
    *YES!*

  • @hongkongsmartboy
    @hongkongsmartboy 4 года назад

    Beside for noble gas, Octet rule is majorly for Neon-near elements (Carbon, Nitrogen, Oxygen, Fluorine, Sodium, Magnesium and Aluminium)

  • @studybuddy7220
    @studybuddy7220 5 лет назад +2

    Which compound will be the most stable the one with the least formal charge on the one with the most formal charge

    • @wbreslyn
      @wbreslyn  5 лет назад

      The one with atoms having formal charges closest to zero.
      Take a look at these videos:
      Determining Formal Charge: ruclips.net/video/vOFAPlq4y_k/видео.html
      Formal Charge Practice Video: ruclips.net/video/-9f4H0puVzc/видео.html
      --- Dr. B

  • @yatishisharma7385
    @yatishisharma7385 6 лет назад +1

    Excellent

  • @RishabhYadav-yg4ci
    @RishabhYadav-yg4ci 3 года назад +1

    Sir what is the relation between Lewis structure and octet rule and tell me please that the compounds which are exceptions for octet rule also exception for Lewis dot structure rule

  • @bk._550
    @bk._550 3 года назад +1

    Thanks, such an amazing explanation.

  • @nebraska875
    @nebraska875 4 года назад +2

    Is water an exception of the octet rule?

    • @wbreslyn
      @wbreslyn  4 года назад

      Only that H atoms only need two valence electrons to have a full other shell.

  • @chourouk-gr9qg
    @chourouk-gr9qg Месяц назад

    thank u

  • @mabia185
    @mabia185 3 года назад

    Thanks 👍

  • @больгосподина
    @больгосподина 5 лет назад

    is very nice thank you very much and good job profesar

  • @bethelhaddis6953
    @bethelhaddis6953 Год назад

    Oh ! Its amazing

  • @erino_0
    @erino_0 Год назад

    What about beryllium, doesn't it only need 4 Valence electrons?

  • @emilykortan1740
    @emilykortan1740 7 лет назад +4

    Thank you so much this is so helpful!

  • @wendyfriz
    @wendyfriz 2 года назад

    How is the Lithium cation formed, did it have to undergo any chemical bonding to become Li+ or did it just randomly lose an electron to complete its 'octet'? Or is this just the result when Lithium reacts with a non-metal to form an ionic compound, meaning you only singled out what would happen to lithium in a reaction technically?

  • @Gohanson888
    @Gohanson888 5 лет назад

    H, Li and Be it's not exceptions from noble gas rule (dublet and octet). But boron is! Stable configurations is 2 and 8 electrons in the outer shell. Another stable configurations in group 3-12 of periodic table is half filled and fulfilled orbital d (d5 and d10).

  • @samsonchen6444
    @samsonchen6444 Месяц назад

    Actually beryllium compounds are quite covalent at least for binary compounds, but can it form a compound with Be2+ without ligands like water? I'm not sure

  • @subooking
    @subooking 4 года назад +1

    I don’t really understand the Boron and hydrogen example?

  • @effortlessschool
    @effortlessschool 6 лет назад +2

    Awesome

  • @sanjuparajuli7636
    @sanjuparajuli7636 2 года назад

    4:04 yes!yes!yes!

  • @xtreme6157
    @xtreme6157 2 года назад

    In metallic bonds, do metals follow the octet rule?

    • @wbreslyn
      @wbreslyn  2 года назад

      Good question! The folks at Socratic did a good job explaining:
      socratic.org/questions/how-does-the-octet-rule-affect-metals

  • @vaibhavpindikura3841
    @vaibhavpindikura3841 3 года назад

    SCl4 has an expanded octet right?

  • @chiaralandolina8561
    @chiaralandolina8561 4 года назад

    Sorry, could pls tell me which atoms make expanded octets?

  • @fruitf7064
    @fruitf7064 8 месяцев назад

    Shouldnt sulpher have 18 valence electrons to complete the 3rd shell? Why just 10? I am confused

  • @cchanley1
    @cchanley1 4 года назад

    I have a question that has been baffling me since high school.
    The octet rule says that atoms tend to gain or lose electrons in order to achieve a "noble gas configuration," which for main group elements would be 8 electrons in the valence shell. For transition metals, for example, when they are bound with ligands, they tend to go for 18 electrons in the valence shell.
    So my question is, what is a "valence shell"? Is it an energy level, like KLMN or 1234, or is it a single sub-shell, like an spdf? For example, would it be correct to say "the valence shell for an Iron atom would be 3p, 4s, and 3d, as they are the highest energy 18 electrons"? Or should I say "the valence shell for an Iron atom would be 4p, because iron achieves a noble gas state by filling it from ligands"? Thanks for any help with this!!!

    • @Hdelbady
      @Hdelbady 3 года назад

      the valence shell is the last shell in an atom. For example O: it is 8 soit has 6 electrons in its last shell.. so the valence shell of Oxygen is 6.

  • @einsteddy9806
    @einsteddy9806 3 года назад

    Thanks for this nice video to understand this exceptions. Even as a German it was easy to understand.

    • @wbreslyn
      @wbreslyn  3 года назад

      Glad it was helpful!

  • @jesussaquin6266
    @jesussaquin6266 6 лет назад +2

    God bless you.

    • @wbreslyn
      @wbreslyn  6 лет назад +1

      Thanks! --- Dr. B

  • @jaydentan4505
    @jaydentan4505 4 года назад +4

    what are formal charges? and how do they help to check for the most likely Lewis structure?

    • @wbreslyn
      @wbreslyn  4 года назад +1

      Here you go!
      Determining Formal Charge: ruclips.net/video/vOFAPlq4y_k/видео.html
      Formal Charge Practice Video: ruclips.net/video/-9f4H0puVzc/видео.html

    • @jaydentan4505
      @jaydentan4505 4 года назад

      @@wbreslyn wow thanks so much! your videos really help me with chemistry we learn in school

  • @Itsme-xi6uy
    @Itsme-xi6uy 5 лет назад

    At 3:10 how can you use so many electrons if phosphorus has 5 valence electrons?

    • @Itsme-xi6uy
      @Itsme-xi6uy 5 лет назад +1

      Actually I got it now, thank you

    • @wbreslyn
      @wbreslyn  5 лет назад +1

      Excellent! --- Dr. B

  • @kiranjaved3765
    @kiranjaved3765 5 лет назад

    How to find out that an atom follow octet rule or not if only an atom is given in the question like O, P, C? Plz answer plz plz

    • @wbreslyn
      @wbreslyn  5 лет назад

      You can't really. You've got to write the Lewis Structure and look at the formal charges. --- Dr. B
      How to Draw Lewis Structures: ruclips.net/video/1ZlnzyHahvo/видео.html
      Lewis Structures Practice Video Worksheet: ruclips.net/video/DQclmBeIKTc/видео.html
      Determining Formal Charge: ruclips.net/video/vOFAPlq4y_k/видео.html
      Formal Charge Practice Video: ruclips.net/video/-9f4H0puVzc/видео.html

  • @rassimsimou1594
    @rassimsimou1594 Год назад

    Good

  • @effortlessschool
    @effortlessschool 6 лет назад +1

    How to check best Lewis structure using formal charge?

    • @wbreslyn
      @wbreslyn  6 лет назад +2

      Like this:
      Determining Formal Charge: ruclips.net/video/vOFAPlq4y_k/видео.html
      Formal Charge Practice Video: ruclips.net/video/-9f4H0puVzc/видео.html
      --- Dr. B

  • @doridori727
    @doridori727 2 года назад

    why didnt u use line??

  • @maticpogorelec8269
    @maticpogorelec8269 6 лет назад +2

    What about transition metals.Let's say Fe^2+. Iron then has 14 valence electrons.

    • @wbreslyn
      @wbreslyn  6 лет назад +3

      In general we don't draw Lewis Structures for transition metals. It gets messy very quickly...
      --- Dr. B

    • @maticpogorelec8269
      @maticpogorelec8269 6 лет назад

      @@wbreslyn Thanks.

    • @samsonchen6444
      @samsonchen6444 Месяц назад

      ​@@wbreslyn Maybe for transition metals like scandium, yttrium and zirconium you could cuz their most stable ion have noble gas configurations

  • @PatrickTouma
    @PatrickTouma 2 года назад +1

    me: says one word to any girl
    the girl: 4:05

    • @wbreslyn
      @wbreslyn  2 года назад +1

      We've all been there!

  • @pc0291
    @pc0291 4 года назад

    Which of the following species does not follow octet rule and not act as Lewis acid-(1)pcl5 (2)CO2 (3) H- (4)SO3

  • @ardaonuk3518
    @ardaonuk3518 7 лет назад +1

    But Al is not exception he nees to give 3 electrons(opposite of N)

  • @hs.3898
    @hs.3898 3 года назад

    How do we calculate the formal charge Dr.B?

    • @atrusfratedot7
      @atrusfratedot7 2 года назад

      Formal charge= Total number of valence electrons in the free atom - total no. of lone pairs electrons - 1/2xtotal no. of bonding electrons.

  • @ashokkeshari5905
    @ashokkeshari5905 7 лет назад +2

    For me BeCl2,BCl3

    • @wbreslyn
      @wbreslyn  7 лет назад +4

      Here you go ...
      ruclips.net/video/N4jhHNndHp8/видео.html
      ruclips.net/video/8l1IoCVWtI4/видео.html
      --- Dr. B

  • @RobertLTrent
    @RobertLTrent 5 лет назад +2

    is there any way to predict the limit of expanded octets? your videos are great but you didnt really explain why expanded octets have the properties they have: to what extent do the D orbitals hybridize?

    • @wbreslyn
      @wbreslyn  5 лет назад

      Actually I’m not sure on that one. Fourteen seems to be the limit, though. Take a look at this discussion…
      chemistry.stackexchange.com/questions/27998/what-is-the-highest-possible-expanded-octet
      This video is a more introductory treatment to the exceptions, so I didn’t go too far into the interesting concepts you mentioned.
      --- Dr. B

  • @TheSonicSegaNerd
    @TheSonicSegaNerd Год назад +1

    NO
    Yᴇs!

  • @fjbrown92
    @fjbrown92 7 лет назад

    why does lithium lose the valence electron?

    • @wbreslyn
      @wbreslyn  7 лет назад +5

      Since it's only got one electron in it's outer shell it will lose that electron. That way the shell goes away leaving a full shell underneath. In the case of Lithium that would mean the first energy level/shell which only needs two electrons to be full. In a larger sense Li loses the electron to form a chemical bond and lower its energy and become more stable. --- Dr. B

  • @adityaa8918
    @adityaa8918 5 лет назад

    Phosphorous is also confusing

    • @wbreslyn
      @wbreslyn  5 лет назад

      Agreed. It can have an expanded octet. --- Dr B

  • @wendyfriz
    @wendyfriz 2 года назад

    Also, why does the O get all the electrons (4:38), and not N? Why couldn't it be the other way around?

  • @catchall814
    @catchall814 3 года назад +1

    i have a question
    in the case of ionic bonds, like the one bw sodium and chlorine, can we represent it as a lewis dot structure/

    • @wbreslyn
      @wbreslyn  3 года назад

      Yes, but we need to be clear that electrons aren't shared in the bond. Like this:
      ruclips.net/video/nQyOaEtboC8/видео.html

  • @Sour4v.k
    @Sour4v.k 6 лет назад +1

    👏👏

  • @michaelllerandi9765
    @michaelllerandi9765 5 лет назад

    You mentioned that expanded octets occur on the third period from Silicon and below. P is on the same period as Si, and so is Cl. On the PCl5 example, Cl is considered complete with its outermost shell filled with just 8 valence electrons, completing the octet. My question is, what if Cl happens to be the element on the center of the lewis structure? Will it be able to carry more valence electrons than 8 or it’s limited to 8?

    • @wbreslyn
      @wbreslyn  5 лет назад

      Take a look at this video (see how Cl isn't limited to 8):
      ruclips.net/video/bXEMU2fMMus/видео.html
      --- Dr. B

  • @Burger14
    @Burger14 Месяц назад

    Still doesn’t explain why an atom can have 10 valence electrons 😑

  • @mitoticgaming8951
    @mitoticgaming8951 2 года назад

    What about Fe 2+ and Fe 3+?

  • @conbossconboss4446
    @conbossconboss4446 4 года назад

    you couldnt just put them in a list, how the fuck does this video have 131k views

  • @Manu-rt3mp
    @Manu-rt3mp 16 дней назад

    Why am i finding college majors in the comment section lol, here in India that's our class 11 chemistry shit

  • @wendyfriz
    @wendyfriz 2 года назад

    How is the Lithium cation formed, did it have to undergo any chemical bonding to become Li+ or did it just randomly lose an electron to complete its 'octet'? Or is this just the result when Lithium reacts with a non-metal to form an ionic compound, meaning you only singled out what would happen to lithium in a reaction technically?