pyhon 進階分析 - 2.2 LightGBM 分類 | 信用卡違約預測 ( Credit Card Default Prediction in python)

Поделиться
HTML-код
  • Опубликовано: 3 фев 2025

Комментарии • 1

  • @play_data
    @play_data  11 месяцев назад

    # 延續 3.1 程式碼
    params = {
    'boosting_type': 'dart', #生成方式 gbdt, dart, rf
    'n_estimators' : 1000,
    'learning_rate': 0.05,
    'n_jobs' : -1, #執行所有CPU
    'random_state' : 7,
    }
    scoring = {
    'accuracy' : make_scorer(accuracy_score),
    'precision' : make_scorer(precision_score),
    'recall' : make_scorer(recall_score),
    'f1_score' : make_scorer(f1_score),
    }
    param_grid = {
    'learning_rate': [0.1, 0.05, 0.01],
    'max_depth': [3, 5, 7],
    'num_leaves': [15, 31, 63],
    'n_estimators': [1000, 1500, 2000],
    'boosting_type' : ['gbdt','dart'],
    'random_state' : [7],
    }
    train_X_fs, feature_name = permutation_selection(train_X, train_Y,
    params = params,
    imp = 0.005,
    Y_type = 1)
    model, cv = build_model(train_X_fs, train_Y, params = params,
    Y_type = 1, scoring = scoring)
    cv['test_accuracy'].mean()
    cv['test_precision'].mean()
    cv['test_recall'].mean()
    cv['test_f1_score'].mean()
    model_grid_tune = grid_tune(train_X_fs, train_Y, Y_type = 1)
    model_random_tune = random_tune(train_X_fs, train_Y, Y_type = 1)