Can You Visualize the Riemann-Stieltjes INTEGRAL?

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии •

  • @gavintillman1884
    @gavintillman1884 2 месяца назад +3

    I find this concept, and the related Radon Nikodym derivatibe unintuitive - this helps. One area where the motivation works better is in probabily theory where the ingegral of g(x) dF(x) where F is cumulative proabality function is the integral g(x) f(x) where f(x) is the probability density function - namely the expectation of g(x)

  • @sphakamisozondi
    @sphakamisozondi 2 месяца назад +3

    I'm starting to think, Riemann is a criminally underrated mathematician by the general public.

    • @dibeos
      @dibeos  2 месяца назад +1

      @@sphakamisozondi yes, you’re right

  • @randomdude8171
    @randomdude8171 2 месяца назад +2

    If the function g is a parameterization of a curve, then wouldn't the Riemann-Stieltjes integral become a line integral? Would it be incorrect to interpret the line integral as a special case of the Riemann-Stieltjes integral?

    • @dibeos
      @dibeos  2 месяца назад +3

      @@randomdude8171 Yes, if g is a parameterization of a curve, the RS integral becomes a line integral. In fact, line integrals can be considered as special cases of the RS integral, where g describes the path and f represents a scalar field evaluated along the curve. So, it’s not incorrect to interpret the line integral this way. The RS integral is very flexible, and different interpretations depend on how g is chosen.

  • @apolloandartemis4605
    @apolloandartemis4605 2 месяца назад +1

    Hi! How does this relate to the geometric intuition behind u-sub?

    • @dibeos
      @dibeos  2 месяца назад

      @@apolloandartemis4605 The intuition behind the RS integral relates to how the increments of the function g weight the values of f as you sum over intervals. This can be connected to u-substitution, because the change in variables modifies the integration scale, which is how the differential dg changes in the RS sum, which “re-weights” contributions at different points. Both involve adjusting the way we sum contributions to account for a variable transformation

    • @apolloandartemis4605
      @apolloandartemis4605 2 месяца назад +1

      ​@@dibeosthank you so much! Love the videos by the way.

    • @dibeos
      @dibeos  2 месяца назад

      @@apolloandartemis4605 thanksssss 😎

  • @pandabers
    @pandabers 2 месяца назад +1

    Thanks for this! I encountered some integrals with respect to a function in probability but was not familiar with these. So is it correct to say that if f(x) = x, they the integral of x with respect to g(x) is the area under g-inverse(x)?

    • @dibeos
      @dibeos  2 месяца назад

      @@pandabers no, the area is the projection of g(x) under f(x) on the f-g plane

  • @joeeeee8738
    @joeeeee8738 2 месяца назад +1

    Awesome overview!

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w 2 месяца назад +1

    Awesome content selection. Thanks!

  • @rewixx69420
    @rewixx69420 2 месяца назад +2

    wake up babe the integral vid is out.

    • @dibeos
      @dibeos  2 месяца назад

      @@rewixx69420 😎😎😎😎😎

    • @renengan25
      @renengan25 2 месяца назад +2

      ​@@dibeosseria bueno, si lo podrían traducir a español 👍🏻

    • @dibeos
      @dibeos  2 месяца назад +1

      @@renengan25 ¡Nuestro objetivo futuro es hacer todos estos videos en español, ya que es el segundo idioma más hablado en el mundo!

  • @JOHN-ex8rb
    @JOHN-ex8rb 2 месяца назад +1

    pretty nice moring
    i hope this wont get me vomting....... although keep these things up

    • @dibeos
      @dibeos  2 месяца назад

      @@JOHN-ex8rb you can do it. I believe in you 😎

  • @SobTim-eu3xu
    @SobTim-eu3xu 2 месяца назад +1

    Interesting video!)

    • @dibeos
      @dibeos  2 месяца назад

      @@SobTim-eu3xu we are glad that you liked it!

    • @SobTim-eu3xu
      @SobTim-eu3xu 2 месяца назад +1

      @@dibeos like I amazed by animations, and animation of drawing line, like its not straight but wobbly, I love that one