Lecture - 1.4 Linear Combinations and Span

Поделиться
HTML-код
  • Опубликовано: 26 дек 2024

Комментарии •

  • @epistemophilicmetalhead9454
    @epistemophilicmetalhead9454 10 месяцев назад +2

    if v is an element of vector subspace W (of vector space V), then every kv is an element of U which becomes a vector subspace of V.
    if u&v are vectors in vector space V, then au+bv is a linear combination of u&v and its vector space W (subspace of V) is its span. In other words, set of all linear combinations of a set of vectors is the span of those vectors
    span of null vector space = null vector
    if vector space V contains S, span of S is a subspace of V
    subspace S of vector space V is the spanning set of V if the span of S = linear combination of vectors in S = V

  • @cartoonpage9696
    @cartoonpage9696 3 года назад +5

    Sir please can you provide pdfs

  • @Ackerman_at_cbs
    @Ackerman_at_cbs 6 месяцев назад

    In the definition of span, Vi belongs to S not R

  • @utkarshshukla2340
    @utkarshshukla2340 2 года назад +4

    Examples should be little bit of more realistic sense , I mean with this set of examples we are not able to conclude today's class

  • @abhishekkataki8257
    @abhishekkataki8257 3 месяца назад

    Please provide notes

  • @devd_rx
    @devd_rx Год назад

    wow i absolutely got horrified seeing the pdf, thankfully its correct in the video, i wonder how a phrase got removed from the pdf

  • @desitrump
    @desitrump Год назад

    0:13

  • @ThakursBoy
    @ThakursBoy Год назад +2

    4done✓

  • @xyz956
    @xyz956 3 года назад +1

    Provide pdf sir

    • @sekhar018
      @sekhar018 2 года назад +11

      Khud likh lo sir khud hi likh rahe hain aur kitna chahiye

    • @snehangshuroy
      @snehangshuroy 2 года назад +1

      archive.nptel.ac.in/content/storage2/courses/downloads_new/LectureNotes/111106135/111106135.zip

    • @pallavibarman6214
      @pallavibarman6214 Год назад

      @@snehangshuroythanks