Lecture 22 - Examples and Second isomorphism theorem

Поделиться
HTML-код
  • Опубликовано: 16 дек 2024

Комментарии • 12

  • @mofidw8553
    @mofidw8553 Год назад +1

    Such a great detailed informative video. I can't be more grateful. Best wishes and regards

  • @atifzaheer2671
    @atifzaheer2671 3 года назад +2

    One important point: We do not need to prove that H intersection N is a normal subgroup of the group homomorphism because we we finally get it as the kernel of the homomorphism map.

  • @RahulMadhavan
    @RahulMadhavan 4 года назад

    @06:20 I think the steps of derivation can be as below (noting that S' = e^(i theta) for theta in [0,2pi])
    C*/S'
    = {rS': r \in R+}
    = {|z| S': z \in C*}
    = {|z| e^(i arg(z)) S': z \in C*}
    = {z S': z \in C*}

  • @revanthkalavala1829
    @revanthkalavala1829 11 месяцев назад

    Second Isomorphisam looks like corollary rather than Thereom

  • @VS-cq2zj
    @VS-cq2zj 2 года назад

    Tq sir .. very helpful..

  • @subhashjohnson2333
    @subhashjohnson2333 3 года назад +1

    Sir, you said about a particular case that G can be thought of as a subgroup of G' when G is homomorphic to G' and Ker (phi) is e only. But sir, how is it possible that if G and G' are defined with different operations..?

    • @AvinashKumar-jc3ng
      @AvinashKumar-jc3ng 3 года назад +4

      it simply means that the elements of G behave in the same way as the elements of G' do.

    • @subhashjohnson2333
      @subhashjohnson2333 3 года назад +1

      @@AvinashKumar-jc3ng Ok.. Thank you..

  • @issaccherian3002
    @issaccherian3002 4 года назад +1

    Is H/N and HN/N same?

    • @HarshKumar-tb2kt
      @HarshKumar-tb2kt 3 года назад +4

      H/N is not defined as N is not a subgroup of H

  • @artsandculture2008
    @artsandculture2008 3 года назад

    Wow!!!!!
    I don't understand that why are there so less views?