Finding Taylor's Series | MIT 18.01SC Single Variable Calculus, Fall 2010

Поделиться
HTML-код
  • Опубликовано: 13 янв 2025

Комментарии • 43

  • @georgesadler7830
    @georgesadler7830 3 года назад +1

    Professor Lewis thank you for this classic selection of functions that is used to find Taylor Series Expansion in Calculus II. Taylor Series Expansion is a powerful method in science and engineering.

  • @TreacleMary
    @TreacleMary 12 лет назад +4

    Taylor series is basically McLaurin expanding around a different point. If you set your expansion point to zero, then you get the McLaurin series.

  • @gogogino
    @gogogino 13 лет назад +6

    smooth explanations, if our professors where like that, i would be happy, but they are some elders stack in the 60s

  • @menozmenoz
    @menozmenoz Год назад +1

    at 7:02 he says we've already seen whatìs the taylor series for ln functions. anyone knows where i can find that lecture?

    • @mitocw
      @mitocw  Год назад

      Here's the course page on the Taylor Series: ocw.mit.edu/courses/18-01sc-single-variable-calculus-fall-2010/pages/unit-5-exploring-the-infinite/part-b-taylor-series/. Best wishes on your studies!

  • @memojedi
    @memojedi 13 лет назад +1

    this is like going back to school... great explanation!!

  • @johnkang2000
    @johnkang2000 11 лет назад +3

    ? Almost all other Unis do that too.
    If you do Electrical Engineering, you tend to get them really early on with complex analysis.

    • @20gully
      @20gully 6 лет назад

      and if you take the IB Diploma you do it during your senior years in high school for your option topic

  • @sebastianbalbo1906
    @sebastianbalbo1906 2 года назад +1

    Madhava serie not Taylor serie

  • @bobkameron
    @bobkameron 4 года назад

    Nice explanations and videos!

  • @stan021
    @stan021 13 лет назад

    it is a very good explanation, very good video

  • @jinnjinn5567
    @jinnjinn5567 2 года назад

    Good to memorize the easiest Maclaurin series off of Wikipedia;
    - sin, cos, sinh, cosh, arctan, arctanh
    - e^x, ln(1-x), ln(1+x)
    - 1/(1-x), 1/(1-x)^2, 1/(1-x)^3

  • @imegatrone
    @imegatrone 13 лет назад

    I Really Like The Video Finding Taylor's Series From Your

  • @Jarrodjohn2007
    @Jarrodjohn2007 5 лет назад +1

    Where is the 1/2 in the front go? I see 1/2 in front of the original two infinite sums, but thereafter it disappears. Where did it go?

    • @probasteelchiquitoahorapro1490
      @probasteelchiquitoahorapro1490 4 года назад

      I have the same question, i thought it's because he add the two series when the n is even, and for that he had 2(Serie), and that 2 cancel out with the 1/2, but i don't know ir thats correct

    • @imad9948
      @imad9948 3 года назад

      when n is even -1 goes away and we'll get 2x^n at the numerator of the sum of the two series.

  • @Mrsir316
    @Mrsir316 13 лет назад

    I love this dude

  • @blueauraretriever
    @blueauraretriever 6 лет назад

    I hope my calculus processor will be a good processor because I don't want a crappy processor while in college. *DONT TELL ME PROCESSOR IS NOT THE RIGHT WORD!*

  • @brycepatties
    @brycepatties 13 лет назад

    that's a huge piece of chalk.

  • @barancel11
    @barancel11 5 лет назад

    crystal clear

  • @geographymathmaster
    @geographymathmaster 12 лет назад

    It's like he's using sidewalk chalk.

  • @adamledger6836
    @adamledger6836 8 лет назад

    hey does anyone know who came up with the multivariate expression for the taylor expansion, you know the one with the iterated partial derivatives

    • @adamledger6836
      @adamledger6836 8 лет назад

      +Adam Ledger I'm pretty sure it was recent but the mind plays tricks from time to time

  • @henryhacruz3
    @henryhacruz3 10 лет назад

    Ayuda, como resuelvo: integral de x / (raiz(x) + 2)

  • @CODandponies
    @CODandponies 12 лет назад

    how did i go from learning logs to this? its good because i do need 2 know infint geometric serieses but wow

  • @croarsenal
    @croarsenal 13 лет назад

    Why arent there factoriels in ln function?

  • @kartik3088
    @kartik3088 11 лет назад

    how can we use (-1)^n?
    even odds are alternating + & -
    (at 6.06)

    • @mavenuparker
      @mavenuparker 10 лет назад

      Hey Karthik!
      Consider the nth term here:
      t_n = (-1)^n ( (2x)^(2n+1))/(2n+1)!
      Observe that the index runs from 0 to infinity
      Consider
      1)The first term
      n = 0
      Term1 = (-1)^0 ( (2x)^(1))/1! = 2x
      2) Second term
      n = 1
      Term2 = (-1)^1 ( (2x)^(2+1))/(2+1)! = -(2x)^3/3!
      3) Third term
      n = 2
      Term3 = (-1)^2 ( (2x)^(4+1))/(4+1)! = (2x)^5/5!
      The sum of all such tems would give you the series expansion.
      If I understand the motive behind your question properly, notice that it's (-1)^n and the power of x is (2n+1). See that (-1)^(2n+1) would not alter the signs but (-1)^n would alter the signs of odd terms as the index runs from 0 to infinity.

  • @KatyLee
    @KatyLee 12 лет назад

    I'm interested if they teach how to solve the problems given in IMO (International Mathematical Olympiad) in MIT. Could anyone answer, please?

    • @majormaki1495
      @majormaki1495 7 лет назад

      Katy Lee I think not. Only those who have not attended university are eligible to compete in IMO.

  • @VictorLopez91
    @VictorLopez91 13 лет назад

    Excelent, useful to study

  • @henryjunior38
    @henryjunior38 11 лет назад

    what happened to his voice at 3:55???

  • @parambrata2010
    @parambrata2010 13 лет назад

    awesome boss..

  • @LAnonHubbard
    @LAnonHubbard 13 лет назад

    @brycepatties I bet you say that to all your professors!

  • @taylorlorenztransormation3102
    @taylorlorenztransormation3102 3 года назад

    Very helpful

  • @kenichimori8533
    @kenichimori8533 4 года назад

    Multiple is down simple.

  • @cinnamoncrunch8765
    @cinnamoncrunch8765 4 года назад

    Being very polite non of this is used in real life

  • @Jo-bi2rs
    @Jo-bi2rs 7 лет назад

    Esto buscaba 🙋

  • @fizzlemanizzleable
    @fizzlemanizzleable 13 лет назад

    i learnt trigonometry today
    now by brain hurts

  • @pizzle501
    @pizzle501 13 лет назад

    MIT does taylor series in calc 1? wtf!

  • @1redrider100
    @1redrider100 6 лет назад

    I love ya, you’re a great professor, but you remind me too much of Jon Arbuckle.