This simple Hack will help you solve this problem in Seconds? | NO Calculators Allowed

Поделиться
HTML-код
  • Опубликовано: 18 ноя 2024

Комментарии • 271

  • @mrtbzu9347
    @mrtbzu9347 2 года назад +8

    🙏🙏🙏🙏🙏🙏🙏🙏🙏💚

    • @PreMath
      @PreMath  2 года назад +3

      Thank you for your feedback! Cheers!
      You are awesome😀
      Love and prayers from the USA!

    • @mrtbzu9347
      @mrtbzu9347 2 года назад +2

      Thank you so much ,I respect you , your student and from Ethiopia 🇪🇹

  • @CjqNslXUcM
    @CjqNslXUcM 2 года назад +72

    I like the difference of squares, I use it a lot when multiplying larger numbers where the difference is even. For example 27 x 33 = (30+3)(30-3) = 30^2-3^2 = 900-9 = 891

    • @PreMath
      @PreMath  2 года назад +8

      Very smart! Very impressive.
      Thank you HAL! Cheers!
      Keep rocking😀

    • @DetCoAnimeFan
      @DetCoAnimeFan 2 года назад +3

      Yes, I do the same

    • @McGhinch
      @McGhinch 2 года назад +2

      I discovered this very early. When I looked at the thumbnail I already had 2022^2 - 1 translated into 2021*2023. Then the solution was very easy: 2021*2023/2021=2023.

    • @hydrarl3869
      @hydrarl3869 2 года назад

      doing 27*30 which most people can get pretty damn fast since it is similar to doing 3^4 but instead of multiplying 27*3 you are multiplying by 30, and adding 27*3 which is exactly like 3^4 is faster for me

  • @ConorChewy
    @ConorChewy 2 года назад +24

    I didn't spot the difference of squares route, I thought about it geometrically.
    Imagine a grid of points 2022×2022, and then you take away the bottom corner point, you'd be left with a block of points 2022 tall and 2021 wide and a single strip of 2021 points on the side, so dividing by 2021 would give 2022+1=2023.

    • @PreMath
      @PreMath  2 года назад +4

      Thank you Conor! Cheers!
      Keep rocking😀

    • @TomCee53
      @TomCee53 2 года назад +2

      Great example. Thanks!

    • @ozanmrcan
      @ozanmrcan 2 года назад +1

      bro cool

    • @nayaka-zna
      @nayaka-zna 2 года назад

      What a beautiful approach!

    • @alittax
      @alittax 2 года назад

      I don't understand this solution completely, could someone please explain it? Thanks.

  • @gavintillman1884
    @gavintillman1884 2 года назад +13

    Quicker to visualise as sun of geometric progression, can do it in one’s head instantly. Think of 2021 as 2022-1 and you have the sun of a GP with initial value 1, constant ratio 2022 and number of terms 2, so solution is 1+2022 ie 2023.

    • @abcde12490
      @abcde12490 2 года назад

      I had the same idea goog job bro

    • @williammbollombassy1778
      @williammbollombassy1778 2 года назад

      Ce que j'ai vu c'est une identité remarquable (a^2-b^2) = (a-b)*(a+b)

    • @abcde12490
      @abcde12490 2 года назад

      @@williammbollombassy1778 I understand you're French but if you want us to understand you gotta speak english. I'm Italian but I'm not writing: "Io ho avuto la tua stessa idea non ci credo", no, I write it in order to make others understand

  • @Teamstudy4595
    @Teamstudy4595 2 года назад +11

    Easiest question ever seen on your channel!!

    • @1729.
      @1729. 2 года назад +1

      @@HackedPC Idk whether I am right but here's ur solution it is very well known that we can write a^2+1/a^2=(a-1/a)^2+2, just replace it
      2(a-1/a)^2-(a-1/a)-5 (-7+2=5)
      let a-1/a=x
      2x^2-x-5 by solving this quadratic expression u will get x=(1-sqrt(41))/4 and x=(1+sqrt(41))/4
      where x=a-1/a
      a-1/a=(1-sqrt(41))/4 and a-1/a=(1+sqrt(41))/4
      (a-1/a-1+sqrt41/4) and (a-1/a-1-sqrt41/4)
      thats it btw i am in 9th standard who dont even know quadratic formula lmao XD XD XD XD XD

    • @PreMath
      @PreMath  2 года назад +1

      Glad you think so!
      Excellent Jayant
      Thank you! Cheers!
      Keep rocking😀

    • @1729.
      @1729. 2 года назад

      @@HackedPC wow bro btw can you give me solution and where are u from :)

  • @jp-legal
    @jp-legal 2 года назад +7

    You can solve it easily with the binomial formula. Setting x = 2021. Than you have ((x+1) ² -1)/x , next step (x²+2x+1-1)/x, same as (x²+2x)/x, divide all through x, then you have (x+2)/1, same as x+2. X is 2021 and add 2 makes 2023.

    • @marchenwald4666
      @marchenwald4666 2 года назад +2

      That's what I did too. x')
      Solvable by head within a few seconds.

  • @addison_reilly5904
    @addison_reilly5904 2 года назад +21

    This can also be done very quickly with some simple algebra,
    Let x=2021
    So:
    (2022²-1)/2021
    Becomes:
    ((x+1)²-1)/x
    Then, by expanding out (x+1)² we get:
    (x²+2x)/x
    And now, we can factor out the x:
    (x(x+2))/x
    So that the x on the top and bottom cancel, giving us:
    x+2, and since we know x=2021, x+2=2023 :)

    • @rezajafari5003
      @rezajafari5003 2 года назад +4

      I solved as you 👍👍👍👍👍

    • @PreMath
      @PreMath  2 года назад +3

      Cool
      Excellent Addison
      Thank you! Cheers!
      Keep rocking😀

    • @Mycroft616
      @Mycroft616 2 года назад

      Upvotes for my fellow Algebra users.

  • @rilian226
    @rilian226 2 года назад +7

    can be generalized to
    (a+1)^2 - 1
    ----------------- = a+2
    a

    • @PreMath
      @PreMath  2 года назад +1

      Cool
      Thank you! Cheers!
      Keep rocking😀

  • @debdasmukhopadhyay4692
    @debdasmukhopadhyay4692 2 года назад +3

    So simple, and so nice. Thank you very much. Fantastic.

    • @PreMath
      @PreMath  2 года назад +1

      Excellent
      Thank you Debdas! Cheers!
      Keep rocking😀

  • @Shankarcreation9403
    @Shankarcreation9403 2 года назад +1

    Thank you for giving us a beautiful solution.I've understood these type of sums.Thank you very much for giving us the trick Sir.

  • @badalmondal3753
    @badalmondal3753 2 года назад +32

    I solved it in 0.4 second without seeing the video. The answer is 2022+1 i.e. 2023

    • @PreMath
      @PreMath  2 года назад +2

      Excellent Badal
      Thank you! Cheers!
      Keep rocking😀

    • @rainbowsalt2861
      @rainbowsalt2861 2 года назад

      Me too bro...just after having a look at the thumbnail

  • @parthasarathibehera821
    @parthasarathibehera821 2 года назад +17

    I solved it without watching the video.
    Here, what we can actually do here is, we can apply the identity: a² - b² = (a + b)(a - b)
    (2022² - 1) ÷ 2021 = (2022² - 1²) ÷ 2021 = ((2022 + 1)(2022 - 1)) ÷ 2021 = (2023 × 2021) ÷ 2021 = 2023
    जय श्री राम।

    • @PreMath
      @PreMath  2 года назад +3

      Excellent Partha
      Thank you! Cheers!
      Keep rocking😀

    • @createyourownfuture5410
      @createyourownfuture5410 2 года назад

      I tried to match with the 2021 from the start. So I did this:
      (2022²-1)/2021
      ={(2021+1)²-1²}/2021
      =(2021+1-1)(2021+1+1)/2021
      =(2021)(2023)/2021
      =2021
      जय श्री राम

  • @ianboard544
    @ianboard544 2 года назад +1

    This is one of those patterns that appear on SATs - when you see anything in the form a^2-b^2, immediately factor it.

  • @luigipirandello5919
    @luigipirandello5919 2 года назад +3

    Beautiful solution. Thank you, Sir.

    • @PreMath
      @PreMath  2 года назад +2

      Welcome Luis
      Thank you! Cheers!
      Keep rocking😀

  • @mcorruptofficial6579
    @mcorruptofficial6579 2 года назад +1

    Great and more importantly actual problem sir, greetings, have been solved in 30 sec about.
    Happy New Year 🎆

    • @PreMath
      @PreMath  2 года назад +1

      Happy new year!
      Excellent Job
      Thank you! Cheers!
      Keep rocking😀

  • @locomotivetrainstation6053
    @locomotivetrainstation6053 2 года назад

    There is a trick with square numbers...
    So basically lets take the number "394" for example, squaring the number gives 155236
    Now, minus by 1 = 155235 = 393 × 395 so that means 394^2 - 1 ÷ 393 = 395
    The trick works with any number too

  • @Phlebas
    @Phlebas 2 года назад

    Out of school for a while now, but I'm proud to say I recognized the pattern from the thumbnail and was able to figure it out in my head (took me more than 5 seconds, admittedly)

  • @albertbatfinder5240
    @albertbatfinder5240 2 года назад

    I knew from school (not that I ever worked it out) 50 years ago about the difference of two squares. So it was easy. What I don’t like is that for other problems, there must be rules I know and rules I simply don’t know. And if I don’t know, I have no chance. Is the difference of two squares obvious? I don’t think it is. I don’t think it’s anything I could derive off the cuff in an exam situation.

  • @govindashit6524
    @govindashit6524 2 года назад +2

    Simple problem.But explainetion is to impressive

    • @PreMath
      @PreMath  2 года назад +2

      Thank you Govinda! Cheers!
      Keep rocking😀

  • @samanehkordnia5847
    @samanehkordnia5847 2 года назад +1

    خیلی خوب، مختصر و مفید 👏👏👏

    • @PreMath
      @PreMath  2 года назад +1

      Excellent! Farsi, a sweet language.
      Thank you! Cheers!
      Keep rocking😀

    • @samanehkordnia5847
      @samanehkordnia5847 2 года назад

      متشکرم از لطف شما

  • @kalyanbasak6494
    @kalyanbasak6494 2 года назад +1

    , good evening sir answer sharing 2023, fine teaching, thank you sir

    • @PreMath
      @PreMath  2 года назад +1

      Excellent Kalyan
      Thank you! Cheers!
      Keep rocking😀

  • @mathmannix
    @mathmannix 2 года назад

    I did it just about as fast, but a slightly different way.
    I thought of 2022^2 as (2021+1)^2. Actually, I thought of the problem as (n+1)^2-1 all divided by n. Which I simplified as (n^2+2n+1 - 1)/n = (n^2+2n)/n = n+2.

  • @jimmorrison2657
    @jimmorrison2657 2 года назад +1

    I did this in my head, without any equations.
    Imagine 2022^2 -1 as a square with sides of 2022, and one point missing at the top right corner.
    The rightmost column is a column with 2021 points in it. Take this column, rotate it 90 degrees and put it on top of the square.
    You now have a rectangle with width 2021, and height 2023. How many 2021s in this block? Answer: 2023.

  • @georgesadler7830
    @georgesadler7830 2 года назад

    Thank you for another great mathematical video.

  • @SamsungJ-kk5nr
    @SamsungJ-kk5nr 2 года назад

    Nice resolution on this exercise.

  • @philipkudrna5643
    @philipkudrna5643 2 года назад +2

    Before watching: difference of 2 squares formula: (2022^2-1) can be written as (2022-1)(2022+1) or 2021*2023. Then 2021 cancels out in the fraction an 2023 remains as the solution. 5 sec was realistic.
    After watching: yes!

    • @PreMath
      @PreMath  2 года назад +1

      Excellent Philip
      Thank you! Cheers!
      Keep rocking😀

    • @antivari1
      @antivari1 2 года назад

      Elementary school math, in Serbia. Well known transformation a^2-b^2=(a-b)(a+b)...

  • @hfhf4u
    @hfhf4u 2 года назад +1

    tommorow i have math exam about this subject too but we dont square the 1 so it is a bit wired

  • @pavelkyzman7987
    @pavelkyzman7987 2 года назад +1

    Excellent thematic video for New Year. You are best! :-)

    • @PreMath
      @PreMath  2 года назад +1

      Wow!
      So nice of you.
      Thank you for your feedback! Cheers!
      You are awesome Pavel😀

  • @Teamstudy4595
    @Teamstudy4595 2 года назад +3

    Ans : 2023. (Solved in just 1.5 second)

  • @sameerqureshi-kh7cc
    @sameerqureshi-kh7cc 2 года назад +1

    Premath express journey continues 😊👍🌹

    • @PreMath
      @PreMath  2 года назад +1

      Excellent!
      Thank you Sameer dear! Cheers!
      Keep rocking😀

  • @devondevon3416
    @devondevon3416 2 года назад +2

    Answer =2023
    Found two ways to do it.
    let n=2022
    hence n^2-1/n-1 = n+1 = 2023 answer or
    2022^2-1 = (2022 + 1)(2022-1)/2021)=2023 Answer

    • @PreMath
      @PreMath  2 года назад +1

      Excellent my friend
      Thank you! Cheers!
      Keep rocking😀

  • @242math
    @242math 2 года назад +1

    love this hack, thanks for sharing, happy holidays

    • @PreMath
      @PreMath  2 года назад +1

      Happy holidays!
      Thank you! Cheers!
      Keep rocking😀

  • @ابانوبكريم-ظ2ظ
    @ابانوبكريم-ظ2ظ 2 года назад +1

    Very beautiful

  • @nicogehren6566
    @nicogehren6566 2 года назад +1

    very usefull hint sir thanks

    • @PreMath
      @PreMath  2 года назад +1

      So nice of you Nico
      Thank you! Cheers!
      Keep rocking😀

  • @bentels5340
    @bentels5340 2 года назад +1

    Before watching: 2023. 5 seconds is maybe a little exaggerated, more like 10.
    After watching: exactly the same solution. Of course it helps to know that you (PreMath) really like that difference of squares formula. 😉

    • @PreMath
      @PreMath  2 года назад

      Excellent Ben
      Thank you! Cheers!
      Keep rocking😀

  • @KAvi_YA666
    @KAvi_YA666 2 года назад +2

    Thanks you brother!!!!!!!

    • @PreMath
      @PreMath  2 года назад +2

      You're welcome!
      Thank you for your feedback! Cheers!
      You are awesome AKD😀

  • @mahalakshmiganapathy6455
    @mahalakshmiganapathy6455 2 года назад +2

    I got the answer in a second nice thank you

    • @PreMath
      @PreMath  2 года назад +1

      Excellent Mahalakshmi
      Thank you! Cheers!
      Keep rocking😀

  • @Tobi-pv8cn
    @Tobi-pv8cn 2 года назад +1

    as a engineer, i just ignore the -1 and say the bases are nearly equal, so the solution is 2022. close enough!

  • @MartynDavies
    @MartynDavies 2 года назад

    I said that 2022² is the same as (2021+1) ², which expands to 2021² + 2 x 2021 + 1. Inserted into the top line, the 1 cancels out, and you end up with 2021 ( 2021 + 2 ) / 2021

  • @williamwingo4740
    @williamwingo4740 2 года назад

    Forty-five seconds, without peeking. I'm getting used to this channel: when in doubt, try the difference-of-squares rule.
    But how valuable is it to be able to solve problems that are specifically constructed to come apart under specific rules? Is it really a useful measure of intellectual/mathematical skill?
    There, I said it and I'm glad....

    • @PreMath
      @PreMath  2 года назад +1

      Thank you for your feedback! Cheers!
      You are awesome William😀

    • @clarencegreen3071
      @clarencegreen3071 2 года назад

      I've been thinking the same thing for a while now but didn't say it.

  • @karldavis7392
    @karldavis7392 2 года назад

    I made a=2021 and worked with a+1. Not quite 5 seconds, but easily less than one minute.

  • @atulitgaur
    @atulitgaur 2 года назад +1

    Alternatively you can use distributive law
    (2021 + 1)*2022 / 2021 - 1/2021
    =2021*2022/2021 + 2022/2021 - 1/2021
    =2022 + 1 = 2023

  • @BenjaminWolfeOnGoogle
    @BenjaminWolfeOnGoogle 2 года назад

    That's certainly slick if you happen to think of it! Or, the 2022² is just 2022×2021+2022, so 2022²-1 is 2022×2021+1×2021… so that over 2021 is 2022+1=2023.

  • @studio48nl
    @studio48nl 2 года назад

    1:33 - 0:16 = 1:17 = 77 seconds...
    Yes, Einstein also came up with general and special relativity in seconds... A lot of seconds...

  • @thenaturesgarden7961
    @thenaturesgarden7961 2 года назад +2

    Superb...

    • @PreMath
      @PreMath  2 года назад +1

      Thank you! Cheers!
      You are awesome 😀

  • @lindafromcalifornia1155
    @lindafromcalifornia1155 2 года назад +1

    That was slick. 👍👍👍👍

    • @PreMath
      @PreMath  2 года назад +1

      Thank you Linda! Cheers!
      Keep rocking😀

  • @wackojacko3962
    @wackojacko3962 2 года назад +1

    Excellent

    • @PreMath
      @PreMath  2 года назад +1

      Thank you! Cheers!
      Keep rocking😀

  • @jonathanjose6531
    @jonathanjose6531 2 года назад +1

    Got it, difference of two squares,

    • @PreMath
      @PreMath  2 года назад +1

      Excellent Jonathan
      Thank you! Cheers!
      Keep rocking😀

  • @ikeetkroketjes8431
    @ikeetkroketjes8431 2 года назад +1

    you can write it as ((2022-1)(2022+1))/2021 ( a^2-b^2=(a-b)(a+b)) and 2022-1 is obviously 2021 so we can cancle it out to get 2022+1=2023

    • @PreMath
      @PreMath  2 года назад +1

      Excellent
      Thank you! Cheers!
      Keep rocking😀

  • @alessandrobattistoni4999
    @alessandrobattistoni4999 2 года назад

    You can write 2022^2 as (2021 +1)^2, the result will be 2022^2 + 2*2021 + 1 then just simplify +1 with -1 and divide for 2021. the result will be 2021+2 = 2023

  • @ItalianMaps
    @ItalianMaps 2 года назад

    I’ve done this last year, but in the thumbnail you didn’t put the power 2 to the “1” (I’m not English I don’t know if “power” is correct)

  • @kannans7027
    @kannans7027 2 года назад

    I forgot about the Difference of squares formula, and expanded 2022^2 to (2021+1)^2 but still got the same results though.

  • @AleksLazar
    @AleksLazar 2 года назад +1

    Nice!

    • @PreMath
      @PreMath  2 года назад +2

      Thank you Alex! Cheers!
      Keep rocking😀

  • @h___1
    @h___1 2 года назад

    Can you solution this matter ?
    A+B+C+D+E+F=20
    Provided that you use the numbers from 1 to 19 and do not repeat the use of any number within the solution

    • @mrdontknow8347
      @mrdontknow8347 2 года назад

      There are n numbers of solutions for this!!!😂 U told that we should not repeat the numbers and only use 1to19 not zero and negative number then 1+2+3+7/2+5+11/2=20 (7/2&11/2) lies between 1 to 19 hence satisfies

  • @achieversskies45
    @achieversskies45 2 года назад +1

    Without using (a+b) ^2formula the answer will get the same as 2023
    (2022×2022)-1÷2021
    =4088484-1÷2021
    =4088483÷2021
    Ans =2023

  • @IanNewYashaTheFinalAct
    @IanNewYashaTheFinalAct 2 года назад

    This New Year’s math problem is a little early. Either that or I’m stuck in the past

    • @PreMath
      @PreMath  2 года назад

      No worries my friend
      Thank you Ian! Cheers!
      Keep rocking😀

  • @hartmutholzgraefe
    @hartmutholzgraefe 2 года назад

    Damn, I somehow thought I had seen a square in the denominator, too, and so ended up with 4042, via application of the first binomal formula instead of the third ... (but at least I did it in under 30 seconds ;)

  • @TomCee53
    @TomCee53 2 года назад

    Would have been cuter to use 2021 -> 2022. As in tonight!

  • @toomasvendelin
    @toomasvendelin 2 года назад

    A rare case when I want to like a video without even watching it

  • @susennath6035
    @susennath6035 2 года назад +2

    Yes ,I can

    • @PreMath
      @PreMath  2 года назад

      Excellent Susen
      Thank you! Cheers!
      Keep rocking😀

  • @kiptooj
    @kiptooj 2 года назад

    Not a bad way to start the year 2022. Take home lesson - things are not bad as they seem.

  • @chipan9191
    @chipan9191 2 года назад

    Funny, after I did difference of squares I just changed the denominator from 2021 to 2022-1 and cancelled. I'm not used to doing difference of squares with numbers so I didn't think to simplify the numerator.

  • @SuperYoonHo
    @SuperYoonHo 2 года назад

    thanks!

  • @zmooc
    @zmooc 2 года назад

    I think rewriting 2022^2 to 2022*2021+2022 is simpler and thus nicer.

  • @a_j6650
    @a_j6650 2 года назад +2

    GooD!

    • @PreMath
      @PreMath  2 года назад +1

      Thank you for your feedback! Cheers!
      You are awesome AJ😀

  • @sirajzama8080
    @sirajzama8080 2 года назад

    By using a²-b²=(a+b)(a-b) we can cancel 2021 and the remaining is (2022+1)×1/1 which is 2023

  • @koenth2359
    @koenth2359 2 года назад

    A small second for you, but one giant second for me

  • @MiccaPhone
    @MiccaPhone 2 года назад

    Simpler:
    2022^2 = 2022x2022 = 2021x2022 + 2022, hence:
    2022^2 -1 = 2021x2022 + (2022-1) = 2022x2021 + 2021 = 2023x2021.
    Hence result = 2023.

  • @theophonchana5025
    @theophonchana5025 2 года назад

    #factoring #factor #binomial #polynomial

  • @roucoupse
    @roucoupse 2 года назад +1

    I used my phone instead of a calculator. Wasn't it allowed either?

  • @arunsharma-dx4yn
    @arunsharma-dx4yn 2 года назад

    Elegant!

  • @AristineSilvanus
    @AristineSilvanus 2 года назад

    2023 as u treat 2022 as x and make the equation (2022+1)(2022-1) then cancel out 2021 to get 2023

  • @mrbenwong86
    @mrbenwong86 2 года назад

    If you did not recognise difference of two square, you did not pass year 9 (junior high) math.

  • @dafureveerbhadra2772
    @dafureveerbhadra2772 2 года назад

    I solved without solving, its as basic as we can know the answer as postulate

  • @glowstonelovepad9294
    @glowstonelovepad9294 2 года назад +1

    Before watching the video: 2023.

  • @programmingwithkartik4319
    @programmingwithkartik4319 2 года назад

    He - do this sum in 5 second
    Meanwhile he - do it in 1:48 min 😂
    But i got the answer 2023 by same method before clicking this video 😅

  • @yunusozgurkus1440
    @yunusozgurkus1440 2 года назад

    Hedef 2023! Hauhauhau! Ulan bu niye keşfetime düştü, amk!

  • @yosepupithani5441
    @yosepupithani5441 2 года назад +1

    a2-b2=(a+b)(a-b)

  • @goupigoupi6953
    @goupigoupi6953 2 года назад

    It took a minute but it was fairly simple. Let a be 2021. So, the thing becomes
    a*a + 2a +1 -1 = ax
    x = a * (a+2) /a = a+2 = 2023

  • @jmadratz
    @jmadratz 2 года назад

    Good to know. This type of problem occurs all the time…NOT

  • @yosepupithani5441
    @yosepupithani5441 2 года назад +3

    2023. 20 seconds

    • @PreMath
      @PreMath  2 года назад +2

      Excellent Yosepu
      You are awesome. Keep rocking😀

  • @alfredgrudszus8011
    @alfredgrudszus8011 2 года назад

    Instead of using formula as basis for "tricks" and "hacks", he should try to teach people systematically in maths.

  • @kilroy987
    @kilroy987 2 года назад

    5 seconds calculators not allowed? Oh I feel so challenged, I must click. Actually no.

  • @thomasblackwell9507
    @thomasblackwell9507 2 года назад +1

    Slick!

    • @PreMath
      @PreMath  2 года назад +1

      Thank you Thomas! Cheers!
      Keep rocking😀

  • @markvodicar6040
    @markvodicar6040 2 года назад

    solved it immediately ;)

  • @Gargaroolala
    @Gargaroolala 2 года назад +1

    Done.

    • @PreMath
      @PreMath  2 года назад +1

      Excellent Garrick
      Thank you! Cheers!
      Keep rocking😀

  • @nikolaysharapov6298
    @nikolaysharapov6298 2 года назад

    Здорово , сначала стопор. А потом , как дважды два.

  • @davidtse9812
    @davidtse9812 2 года назад +1

    Difference of 2 squares. 2023

    • @PreMath
      @PreMath  2 года назад +1

      Excellent David
      Thank you! Cheers!
      Keep rocking😀

  • @ranveeryadav176
    @ranveeryadav176 2 года назад +3

    2023 by sqare method

    • @PreMath
      @PreMath  2 года назад +3

      Excellent Ranveer

  • @MukeshGakhar
    @MukeshGakhar 2 года назад +1

    0.3 Seconds ✔

  • @kriskanatgamers5986
    @kriskanatgamers5986 2 года назад

    Without seeing video ON 0.3 SECOND I GOT ANSWER 2023

  • @Zamin30
    @Zamin30 2 года назад

    😂this was so easy literary took spilt split second btw I remember this formula form my 7 or 8th class🤔

  • @TizedesCsaba
    @TizedesCsaba 2 года назад

    A geometry solution instead of (boring) algebra: ruclips.net/video/DZxcrRuRKGY/видео.html

  • @grahammcfadyenhill9555
    @grahammcfadyenhill9555 2 года назад +1

    2022 +1...fraction of a second.

    • @PreMath
      @PreMath  2 года назад +1

      Excellent Graham
      Thank you! Cheers!
      Keep rocking😀

  • @rogerkearns8094
    @rogerkearns8094 2 года назад

    See next year for the answer.

  • @kafaichan3371
    @kafaichan3371 2 года назад +3

    (2022-1)(2022+1)/2021=2023

    • @PreMath
      @PreMath  2 года назад +1

      Excellent Chan
      Thank you! Cheers!
      Keep rocking😀

  • @manualrepair
    @manualrepair 2 года назад +1

    👍

    • @PreMath
      @PreMath  2 года назад +1

      Excellent
      Thank you! Cheers!
      Keep rocking😀

  • @christopherquigley5468
    @christopherquigley5468 2 года назад

    2023 is my answer. I solved it in my head. Let’s see if I am right.

    • @christopherquigley5468
      @christopherquigley5468 2 года назад

      I solved it in a different way though. I imagined that rather than (2022^2 - 1)/2021 we instead had (10^2 -1)/9 And I got eleven. I tried this method on (5^2-1)/4 and got 6. (X^2 - 1)/(X-1) = X + 1
      (X + 1)(X-1) = (X^2 - 1)
      Aka a proof my method works for any integer.
      I am not sure if this is an appropriate way of solving this. But it gave me 2023.

  • @tmdepot6167
    @tmdepot6167 2 года назад

    Without watching it all. Pausing at the 4th sec. 2022^2-1/(2021) =(2022-1)(2022+1)/2021=(2021)(2023)/2021 =2023

  • @wyomgupta7575
    @wyomgupta7575 2 года назад

    thumbnail has a difrent question then the one he solved