An Interesting Nonstandard Equation With Logs

Поделиться
HTML-код
  • Опубликовано: 29 дек 2024

Комментарии •

  • @russellsharpe288
    @russellsharpe288 9 дней назад +15

    Divide by x^ln 25 to get 1 + x^(ln 36/25) = x^(ln 30/25) ie (x^(ln 6/5))² - (x^(ln 6/5)) + 1 = 0, which is quadratic in x^(ln 6/5), and then solve this in the time-honoured way.

    • @philipfoy7117
      @philipfoy7117 4 дня назад

      I did the same, strangely though when I check the solutions I don't get same thing on both sides. Any suggestions?

    • @russellsharpe288
      @russellsharpe288 4 дня назад

      @@philipfoy7117 Not sure I follow. We have
      LHS = x^ln 25 + x^ln 36 = x^ln 25 . ( 1 + x^ln 36 / x^ln 25) = x^ln 25 . ( 1 + x^(ln 36 - ln 25) )
      = x^ln 25 . (1 + x^ln(36/25)) = x^ln 25. (1 + x^(ln (6/5)²)) = x^ln 25 . (1 + x^(2 ln (6/5)))
      = x^ln 25 . (1 + (x^(ln 6/5))² )
      and
      RHS = x^ln 30 = x^ln 25. (x^ln 30/x^ln 25) = x^ln 25 . (x^(ln 30 - ln 25)) = x^ln 25 . x^(ln 30/25)
      = x^ln 25. (x^(ln 6/5))
      and these are the same thing iff x^ln(6/5) is a root of the quadratic 1+y² = y.

  • @TejasDhuri-p8z
    @TejasDhuri-p8z 9 дней назад +6

    Putting x^ln5=a,x^ln6=b,
    a²+b²=ab
    Dividing both sides by ab,
    a/b+b/a=1,
    a/b=m,
    m²-m+1=0,
    m=1±√3i/2
    x=cos(π/3ln(5/6))±sin(π/3ln(5/6))

  • @pietergeerkens6324
    @pietergeerkens6324 9 дней назад +3

    Great problem. Made me think for a bit.
    I got to the equation at 9:02 a bit faster by first rearranging as
    x^(2 ln 5) + x^(2 ln 6) = x^(ln 6) * x^(ln 5)
    and then, also dividing through by x^(2 ln 5), rearranging as
    x^( ln 6 / ln 5)^2 - x^(ln 6 / ln 5) + 1 = 0.

  • @mikecaetano
    @mikecaetano 9 дней назад +1

    Bravo! Substitution transform back substitution complex solutions included.

  • @Caio-Ann
    @Caio-Ann 6 дней назад

    almost made it !!! , i am getting better . my goal is being as good as you are in math , i've being following you since 2022 , thanks man

    • @SyberMath
      @SyberMath  6 дней назад

      Np! You will be better. Keep up the good work 😍

  • @tryphonkorm
    @tryphonkorm 9 дней назад

    Your vids are addictive 😊

    • @SyberMath
      @SyberMath  9 дней назад +1

      Glad you like them!

  • @TypoKnig
    @TypoKnig 9 дней назад +1

    Would the other complex solution be the conjugate of the one you showed? I’m not sure that’s guaranteed, sine the original equation did not have positive integer exponents

  • @wafflaaar1067
    @wafflaaar1067 9 дней назад +1

    tldr I arrived at the same solution but with a different method

  • @rakenzarnsworld2
    @rakenzarnsworld2 9 дней назад +3

    x = 0

  • @scottleung9587
    @scottleung9587 9 дней назад

    Nice - I solved for x directly though.

  • @jursamaj
    @jursamaj 8 дней назад

    This is way overthinking it. As observed, x=0 is a trivial solution.
    For 0 x^3.3 > x^ln30.
    For x=1: x^ln25+x^ln36 = 2 > 1 = x^ln30
    For 1 x^ln36 > x^3.5 > x^ln30.
    Thus x=0 is the only real solution.

  • @E.h.a.b
    @E.h.a.b 9 дней назад +1

    Here is what I did, but didn't simplify Ln(1 +/- i√3)
    let x = e^y
    (e^y)^Ln(25) + (e^y)^Ln(36) = (e^y)^Ln(30)
    (e^Ln(25))^y + (e^Ln(36))^y = (e^Ln(30))^y
    25^y + 36^y = 30^y
    (5/6)^y + (6/5)^y = 1 //Divide by 30^y
    let (5/6)^y = z
    z + 1/z = 1
    z^2 - z + 1 =0 //Multiply by z
    z = (1 +/- √(1-4(1)(1))) /2
    z = (1 +/- i√3) /2
    (5/6)^y = (1 +/- i√3) /2
    y Ln(5/6) = Ln( (1 +/- i√3) /2 ) //Ln() both sides
    y = (Ln(1 +/- i√3) - Ln(2)) /(Ln(5)-Ln(6))
    x = e^y = e^(Ln((1 +/- i√3))-Ln(2)) /(Ln(5) - Ln(6))

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 9 дней назад +1

    X=0, X=e^[(2κπ+-π/3)*i/(ln6-ln5)],k is an integer.