MAE5790-21 Feigenbaum's renormalization analysis of period doubling

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 11

  • @georgesadler7830
    @georgesadler7830 3 года назад +1

    DR. Strogatz, thank you for an excellent analysis and demonstration of Feigenbaum's renormalization analysis of period doubling. From watching and analyzing this topic, I found it very difficult to follow.

  • @robinvincent1162
    @robinvincent1162 9 лет назад +4

    constants are the jewels in nature that make it work.

  • @weishanlei8682
    @weishanlei8682 Год назад

    1:06:11 This functional equation, g(x)=alpha g^{2}(x/alpha), looks to have a simple solution: g(x)=x. Could there be any other closed form for g(x)?

    • @sushobhanchatterjee40
      @sushobhanchatterjee40 Год назад

      A linear form like g(x)=x doesn't possess a quadratic maxima and hence can't be a solution of the functional equation needed to describe the onset of chaos!

  • @brendawilliams8062
    @brendawilliams8062 2 года назад

    Thankyou

  • @jh-gp1cm
    @jh-gp1cm 4 года назад

    thank you

  • @jerryiuliano871
    @jerryiuliano871 Год назад

    Feigenbaum delta, Fd=4.669201609, can determine the "edge of chaos", the Feigenbaum point, Fp =3.5699, by subtracting unity, inverting, then adding unity, to the natural log e power: e^(((1/(Fd-1))+1)=3.5699045

  • @michaelstark8182
    @michaelstark8182 9 лет назад

    good

  • @torleifhansson3545
    @torleifhansson3545 7 лет назад

    R = F(ANGEL)