Understanding The Shapley Value

Поделиться
HTML-код
  • Опубликовано: 11 ноя 2024

Комментарии • 9

  • @AradAshrafi
    @AradAshrafi 2 года назад +4

    one of the best explanations of Shapley values for an ML person. Thanks a lot

  • @NeverHadMakingsOfAVarsityAthle
    @NeverHadMakingsOfAVarsityAthle 6 месяцев назад

    Hey! Thanks for the fantastic content :) I'm trying to understand the additivity axiom a bit better. Is this axiom the main reason why Shapley values for machine learning forecast can just be added up for one feature over many different predictions? Let's say we can have predictions for two different days in a time series and each time we calculate the shapley value for the price value. Does the additivity axiom then imply that I can add up the Shapley values for price for these two predictions (assuming they are independent) to make a statement about the importance of price over multiple predictions?

  • @lingfengzhang2943
    @lingfengzhang2943 11 месяцев назад

    Thanks! It's very clear

  • @nunaworship
    @nunaworship Год назад

    Can you please share the link for the books you recommended!

  • @abdelrahmanwaelhelaly1871
    @abdelrahmanwaelhelaly1871 Год назад

    Thank you so much

  • @zhaobryan4441
    @zhaobryan4441 Год назад

    super super clear!

  • @michalbogacz202
    @michalbogacz202 2 года назад +1

    It was great!!!

  • @SrDazz
    @SrDazz 3 года назад +1

    thanks!

  • @paaabl0.
    @paaabl0. 9 месяцев назад

    Shapley values are great, but not gonna help you much with complex non-linear patterns, especially in terms of global feature importance