AWS re:Invent 2020: Building end-to-end ML workflows with Kubeflow Pipelines

Поделиться
HTML-код
  • Опубликовано: 8 янв 2025

Комментарии • 11

  • @manotewiz5838
    @manotewiz5838 2 года назад

    This is the very good starting point to learn kubeflow

  • @haneulkim4902
    @haneulkim4902 2 года назад +1

    Amazing tutorial, thanks! I've got two questions.
    1. @6:40 what are CreateClusterOp, AnalyzeOp, etc... ?
    2. @12:28 "each components are individual docker" but aren't sum1(a+b), sum2(c+d), sum3 (sum1 + sum3) inside one python function in @dsl.pipeline generator? if not, @10:47 is creating 3 components instead of one which perform three addition?

  • @PizdaRusni2023
    @PizdaRusni2023 3 года назад

    The best introduction to the kfp!

  • @haneulkim4902
    @haneulkim4902 2 года назад

    After creating a pipeline can we test it with different parameters w/o creating a new pipeline? for ex: @10:33 you've specified a,b,c,d but I'm wondering if I can try different a,b,c,d with one pipeline.

    • @praveen_me
      @praveen_me 2 года назад

      The "Experiement" funtionality is exactly what serves this purpose. You can run multiple iterations with different parameters under one Experiment ID. Also you may select what metrics needs to be tracked in each of the iteration.

  • @jairai2739
    @jairai2739 3 года назад +4

    but how to install kubeflow on aws, i tried, we dont have any good tutorial on internet!

    • @satyam70
      @satyam70 6 месяцев назад

      did u got answer,

  • @ig2947
    @ig2947 3 года назад +1

    Appreciate if we can get access to the jupyter notebook you using here.. Thnks

  • @guibirow
    @guibirow 3 года назад +2

    a bit hard to follow with the audio out of sync with the presentation

  • @kachrooabhishek
    @kachrooabhishek Год назад

    CONVERTING THE WHOLE CODE INTO .YAML , HOW TO DEBUG THAT .YAML THEN