Generate LLM Embeddings On Your Local Machine

Поделиться
HTML-код
  • Опубликовано: 15 ноя 2024

Комментарии • 21

  • @moumniable
    @moumniable 10 месяцев назад +6

    i just love how diverse your videos are ! even when i don't particulary look for something your videos drives me to learn more. thanks ❤

  • @rons96
    @rons96 10 месяцев назад +10

    Not bad, but if i may say any tip, i would say to use a sentence-transformer from hugging face for embeddings and then use a llama like llm only to customize the answer, because models created just for embeddings seems to be more accurate for this task. Also, langchain module is easier and useful than using numpy and requests, with lot more features. I use this setup most for RAG and seems to work pretty well.

    • @henrischomacker6097
      @henrischomacker6097 10 месяцев назад

      Very interesting hint. Why would you suggest to use a sentence-transformer from hugging face for creating the embeddings instead?
      Which method does a sentence-transformer from hugging face use to create the embeddings and which one does ollama use?

    • @hackdonalds
      @hackdonalds 9 месяцев назад +2

      I tried llama2 and mistral embeddings through ollama embeddings api. The similarity search results were sht compared to Xenova/all-MiniLM-L6-v2 or gte-small

    • @rons96
      @rons96 7 месяцев назад

      @@hackdonalds yes, llama for embeddings is not good, with sentence-transformers i mean that one you mentioned, then use llama to elaborate the sentence. There's another model better for embeddings but it will require more resources and i don't remember the name now.

    • @rahulmakwana663
      @rahulmakwana663 2 месяца назад

      @@rons96instructorembedding

  • @godwinntowdanso4111
    @godwinntowdanso4111 4 месяца назад

    Spot on. Simplified presentation

  • @mohammadalibazyar5079
    @mohammadalibazyar5079 8 месяцев назад

    thanks, bro... really helpful ❤

  • @Darkev77
    @Darkev77 9 месяцев назад +1

    Powerful video! Guys, anyone knows how I can generate these embeddings if I were to deploy my app remotely?

  • @ddschaefer
    @ddschaefer 10 месяцев назад

    Great video! But where comes faiss into play?

  • @EliSpizzichino
    @EliSpizzichino 8 месяцев назад

    that's very interesting! I imagine you can build your local knowledge base in this way...
    I need to make one for code-snippets that store knowledge bits find around....
    Is `d` dimension fixed by the model? does it mean I have 4096 bytes to store my embedding?

  • @peterparker5161
    @peterparker5161 6 месяцев назад +2

    I tried this with LLAMA3 8b locally. It can work if the sentences are short enough. But when I started plugins in long paragraphs (youtube transcripts) it becomes basically useless. Transformers that are creating for embedding (BERT for example) seems to work better. They also have lower computational cost compared to LLAMA. I tried again with "nomic-embed-text-v1.f16.gguf" and it works much better.

  • @ChristopherBruns-o7o
    @ChristopherBruns-o7o 5 месяцев назад

    Cool guide. Very well explained. +1

  • @JuanDiegoSalamanca-oy6xs
    @JuanDiegoSalamanca-oy6xs 7 месяцев назад

    if you do it in Colab what url do you use?

  • @iamreallybadatphysics
    @iamreallybadatphysics 10 месяцев назад

    Great video! 😃

  • @dangalimov7435
    @dangalimov7435 10 месяцев назад

    Brilliant!

  • @roberthenry7283
    @roberthenry7283 3 месяца назад +1

    where is the source code

  • @Usman_ekram
    @Usman_ekram 10 месяцев назад

    First comment ❤ and ur videos are fantastic

  • @JJTradess
    @JJTradess 10 месяцев назад

    🔥

  • @AGASTRONICS
    @AGASTRONICS 10 месяцев назад

    comments[-1] #FirstComment😅