Tutorial: How to design a transistor circuit that controls low-power devices

Поделиться
HTML-код
  • Опубликовано: 6 май 2011
  • I describe how to design a simple transistor circuit that will allow microcontrollers or other small signal sources to control low-power actuators such as solenoid valves, motors, etc.
  • НаукаНаука

Комментарии • 1,3 тыс.

  • @brianmcdermott4139
    @brianmcdermott4139 7 лет назад +546

    I've never watched a video that was as informative and clear. Your explanations are complete without getting overly complicated. Thank you so much for making these.

    • @DupczacyBawol
      @DupczacyBawol 7 лет назад

      PNP transistors especially, or transistor power that is used a little to warm up the transistor, so using Ohm Law is not 100% accurate :P.

    • @danmick8645
      @danmick8645 6 лет назад +6

      your comment makes no sense....wanna take another run at it?

    • @flyjamaicanz
      @flyjamaicanz 6 лет назад

      lol......great video mate, very well explained.

    • @glennsprigg2378
      @glennsprigg2378 6 лет назад +8

      "Power used to 'warm-up' the transistor" ??
      The .7V loss through the Base/Emitter calculation, is a bit more complex than, but 'like' the typical .6V
      loss through a forward-biased diode. At such 'PN' junctions, the 'P'-type having a deficiency of Electrons, and so having 'Free-Holes'. The 'N'-type has an excess of Electrons ! (I'm keeping it simple here...).
      Now where they are physically touching, (and no voltage applied), for so many atoms thick in the lattice some of the excess flows into the deficiency, creating an Insulating barrier at the physical junction !
      As a result, even when 'Forward-Biased' from a voltage source, a Diode needs at least about .6V just to break down this barrier, before it starts to conduct, so you will always loose this!
      A similar effect(s) are going on inside most typical Transistors. (Hence his '.7V' loss in his calcs).
      (1) For a Diode, this voltage loss is NOT dependent on the LOAD after the Diode! So for example, you could connect 5 diodes in series, for a precise 3V drop, or 10 in series for a 6V drop, irrespective of the load !!
      (2) This 'Insulating' barrier at the PN junction, can be considered the 'Dielectric' of a capacitor, so our Diode is ALSO a Capacitor, with the 'plates' being the P/N materials area themselves.
      NOW it get's interesting though!! as the higher the 'REVERSE-Bias' voltage across the Diode, this FORCES an even LARGER non-conducting 'neutralized' gap/barrier. 2 main things control capacitance....
      The area of the 'plates', and the 'space' (dielectric) between them. So what do we have now???
      A solid-state Voltage-Dependant Variable-Capacitor !!! Yep... and it is utilized a lot these days.....
      although now 'Special' Diodes are made to take advantage of this effect, called 'VariCap-Diodes'.
      Sorry about all that... :-)
      I just get 'excited' playing with software like 'Circuit Wizard', that allows you to design on screen virtually any electronic circuit including virtually all elect/electronic components & IC's, see it all run in REAL time, monitor ALL voltages & currents from ANYWHERE in the circuit simply by mouse movements.
      Not to mention auto creation of your PCB & all artwork when you are ready, with auto track routing.
      ALL before you touch your soldering (not the American 'soddering' :-) ) Iron. Have fun !!!

    • @piskuljkopisljkuljkovic5294
      @piskuljkopisljkuljkovic5294 6 лет назад +1

      There are several components to learning electronics. One place I found that succeeds in merging these is the Gregs Electro Blog (check it out on google) without a doubt the no.1 course that I've heard of. Check out this amazing site.

  • @Burnitnow567
    @Burnitnow567 12 лет назад +181

    Dammit, I wish the internet was around when I was in school!! You kids are sooo lucky to have all this knowledge available instantly!
    --OldGuy :)

    • @gojohnnygo6869
      @gojohnnygo6869 4 года назад +20

      I've been thinking that for years. I wanted to understand and know how to do many things while in my youth but had no available quick easy answers like now. This guy basically covered a 50 page chapter in 20 min without going to the library first. This information would have taken most of a day to learn, if I found the right book. Having someone explain and show examples is so much better than reading about it. Kids these days have no idea how much easier it is to acquire information today compared to 25+ years ago.

    • @j3s0n
      @j3s0n 4 года назад +4

      Humble boomer brag

    • @christianam9951
      @christianam9951 4 года назад +2

      Yeah, but now they use it just to watch non educational stuff !!!

    • @raybin6873
      @raybin6873 4 года назад +3

      C'mon now! Radio Shack had a "101 Electronic Circuits You Can Build " book you could buy...Healthkit offered radio controlling stuff (RC airplanes) and amplifiers...remember the ol' crystal radio? - I built one using thin lacquer coated copper wire, a simple crystal, a empty toilet paper cardboard tube, cheap low power earplug type headphones and a long piece of wire for antenna...it actually worked too..1965! (Crystal radio plans probably somewhere found on YT.) Aah yes..the good ol' days! Truth be - it's much better these days....so all you kids out there...you're spoiled rotten! Ha ha ha! 😉

    • @daraa151
      @daraa151 3 года назад +2

      Yead for my essays had to rely on library, when i go to library the book i want is already has been borrowed😏

  • @JonathanAnon
    @JonathanAnon 7 лет назад +435

    This video should be shown to everybody starting electronics... No talk of doping and PN junctions, show them this first so that they get a picture of what they are doing.. Too many electronics courses start at the microscopic level.

    • @EdwinFairchild
      @EdwinFairchild 6 лет назад +29

      JonathanAnon because those courses are made for engineers . For hobbyists this is probably enough. For an engineer this is not enough.

    • @jabl
      @jabl 5 лет назад +68

      Even engineers would benefit of easier introduction to the matter.

    • @curiosity551
      @curiosity551 5 лет назад +51

      @@EdwinFairchild But the introduction at microscopic level kinda kills the interest in my opinion. I like to develop interest in something before getting started.

    • @EdwinFairchild
      @EdwinFairchild 5 лет назад +17

      @@curiosity551 thats what i mean, if interest is the issue which implies a hobbyist, then ignoring the physics part of it is just fine. For an engineering perspective you dont have the luxury of interest, you NEED to know the intricacies whether they interest you or not.

    • @deegee3142
      @deegee3142 5 лет назад +11

      @@EdwinFairchild if you know it all, why are you here?

  • @calyodelphi124
    @calyodelphi124 7 лет назад +15

    @2:54 Your description of the circuit symbols for NPN vs PNP BJTs is so ridiculously simple and intuitive
    @7:00 So THAT'S what hFE is used for with BJTs!
    This whole video is so informative it's helped me to make tons of sense of how BJTs work. You, sir, are a genius.

  • @AppliedScience
    @AppliedScience  11 лет назад +129

    When the transistor turns off, current flowing through the coil will cause a voltage rise on the collector. If the voltage rise is high enough to turn on the diode, current will flow through the diode and limit the voltage at the collector. The problem is that the diode cannot turn on instantly. It takes time for the diode to start flowing current. The capacitor smooths out the rising voltage, and gives time for the diode to start conducting.

    • @pstark4
      @pstark4 4 года назад +1

      Applied Science that part was curious, I was wondering why the diode feeds it back, wikipedia said it feeds the back emf back into the solenoid to lessen the change in current it experiences when turned off, love it.

    • @yoramstein
      @yoramstein 4 года назад +1

      With the capacitor it make sence. But in all my life I never saw that capacitor to ground in Relay circuit. i red the use fast diode or low threshold voltage diode (Shotky?)

    • @gondala
      @gondala 3 года назад +2

      schottky diode will just fine.

    • @theoldbigmoose
      @theoldbigmoose 3 года назад +3

      Your 5 volt input may have been solid between ground and +5v. I always put a 47K from base to emitter to deal with any leakage currents if the input is inadvertently left open, either by design, or by a failure mode.

    • @figadodeporco
      @figadodeporco 3 года назад +1

      amazing video mate! but, could you tell us what diode should we use for this clamp?

  • @ovidiub13
    @ovidiub13 7 лет назад +123

    I wasted weeks learning all you say in here, which I could have learned in ~20 minutes. Great video. Please add more tags to it, so you rate higher in search results.

  • @mateo77ish
    @mateo77ish Год назад +4

    I’ve watched dozens of transistor vids looking for exactly this info and none of the others put it so plainly and comprehensive. Thank you.

  • @ssl3546
    @ssl3546 2 года назад +4

    For 30 years I've seen explanations of how to use a transistor and never "gotten" it. Bravo this is spectacular. The best explanation of a bipolar transistor I have ever seen in any medium.

  • @GarethJefferson
    @GarethJefferson 10 лет назад +72

    So clear. So lucid. This is a great switching transistor 101. Thanks, really appreciate the work you put into this.

  • @TheChangospace
    @TheChangospace 4 года назад +15

    How I wish I had friends as smart as this guy in my circle. I love channels that pass along wisdom to others....thank you, Sir!

  • @Gryphon018
    @Gryphon018 6 лет назад

    Very simple, straight-forward explanation. And somehow you managed to predict all the questions I wanted to ask as I was thinking them. Excellent video!

  • @BYMYSYD
    @BYMYSYD 8 лет назад +1

    This was the best video I found on biasing a transistor. There were a lot of videos out there that didn't explain what the β quantity actually was.
    Good job.

  • @sfperalta
    @sfperalta 3 года назад +8

    Clear and well-presented. Amazingly, this circuit was pretty much the same as when I started studying electronics back in 1975, including the 2222 transistor! So for you younger students, the techniques outlined in this video will practically never become obsolete. We tend to think that the world is run on low-voltage, low-current technology (e.g. microprocessors, microcontrollers). But at some point real work requires higher voltages and/or higher currents, so studying transistor control circuits, like the one presented here, is very valuable knowledge.

  • @Willam_J
    @Willam_J 5 лет назад +9

    Thank you, thank you, thank you, for mentioning the 0.7 volt drop across the base-emitter junction, when calculating the base resistor. I see many people forgetting to subtract that 0.7 volts. When using 5 volts to drive the base, forgetting that 0.7 volt drop across the base-emitter junction will create a 14% error, when calculating the base resistor. That’s more than enough to prevent the transistor from switching properly.
    Also, for the beginners, when he talks about the “clamping diode”, it’s worth mentioning that it goes by many different names. You’ll hear terms such as, “kickback diode”, “buck diode”, “flyback diode”, etc. They are just different names, for the same diode. Use a good diode, as well. One of the most popular silicon diodes, which I recommend, is the 1N4007. Actually, the MOST common one is the 1N4001, but it’s rated for much lower voltage. The difference in price, between the 1N4001 and 1N4007 is so negligible, that it’s worth just buying 1N4007’s. That way, you’ll be covered for any voltage that you’re likely to come across. It also provides an extra safety margin. In a “clamping” application, a failed diode will typically fail ‘shorted’, which will burn up your switching transistor, as well. It’s definitely worth spending an extra penny, for the better diode.

    • @Spark-Hole
      @Spark-Hole 5 лет назад

      1N4007 has higher forward voltage than 1N4001. 1N4007 waste more energy to operate... Same thing happens to higher voltage transister. So not a good idea to choose higher rating voltage than it needs to be.
      PS.....Also I have heard word "free wheel diode"

    • @Asyss_Complex
      @Asyss_Complex 5 лет назад

      ຮຸ່ງ ພຸ່ງແຣງ So what would be the best way to protect the transistors if picking a higher value diode is not efficient?

    • @RexxSchneider
      @RexxSchneider Год назад

      @@Asyss_Complex The Fairchild (On Semi) 2014 datasheet for the 1N4001-1N4007 series specifies the same forward voltage of 1.1V at 1.0A for the entire range.
      In addition, the energy dissipated in the diode is not a consideration in these sort of applications unless you're trying to switch the solenoid at kilohertz frequencies (!), so it doesn't really matter which diode you use.

  • @tahevol
    @tahevol 4 года назад +1

    One of the best transistor as a switch presentations I’ve seen. Thank you.

  • @tunerfreak2361
    @tunerfreak2361 8 лет назад

    This video is awesome, no one else has been able to answer these questions clearly for me. I also appreciate that you actually included the formulas needed to calculate the resistor needed on the base leg, etc. Great vid, thanks a ton!

  • @Malorie001
    @Malorie001 9 лет назад +3

    Very nice explanation. Super clear and concise primer on transistor basics. I was glad you skipped all the ohms law and such and just got right to the setup and calcs needed to drive your load. All the rest of the blanks can be filled in from innumerable other sources across the net. Excellent job!!!

  • @luismallozzi
    @luismallozzi 8 лет назад +4

    You are a life saver. Thank you for that explanation, it solved some questions that I had in my mind. It's nice to know why I am doing certain things instead of blindly following equations. Thanks.

  • @aviovintage
    @aviovintage 5 лет назад +2

    Watched many video's on the topic, none was ever this clear. Thank you!

  • @GaelicDrummer1
    @GaelicDrummer1 7 лет назад

    Learned more in these few minutes than in the hours I spent on my own to clearly understand these principles. Many thanks and cheers from Florida.

  • @mariusgrobler
    @mariusgrobler 10 лет назад +4

    Thanks. Your experience shows and this makes me feel confident about your lecture. As my brother says: in theory practice and theory is the same but in practice it's not.

  • @northshorepx
    @northshorepx 7 лет назад +6

    Thank you so much. I've spent ages trying to learn this basic theory and you have explained it wonderfully. I now feel I can grab some components and use them to switch real world items from an arduino. Fantastic video!!!

  • @DungHoang-dc2qd
    @DungHoang-dc2qd 5 лет назад

    this is seriously the best lecture I’ve had about BJT on the Internet. Keep up the good work Mr.

  • @adamapsitis6325
    @adamapsitis6325 3 года назад

    Just wow. I have never been able to grasp the basics around transistors, yet your video seems to have demystified it to the point I could confidentiality use them in a very simple circuit. Thanks soooo much.

  • @richardmitchell5482
    @richardmitchell5482 5 лет назад +4

    First year electrical engineer student.
    Thanks for this video, I think you are a great tutor.

  • @felippesilva
    @felippesilva 8 лет назад +56

    Good Tutorial. Thank you for that. Just another thing: You have to consider the power dissipation of the transistor itself, due to the voltage drops across it. taking the numbers (0.2Volts and 56mA), you can say that the transistor dissipates like 11mW of power, which is quite low for that circuit, but if you have a larger current and also a larger voltage drops on the transistor, you could damage your transistor if you don't attach it to a proper heatsink.

  • @richardnday
    @richardnday 5 лет назад

    I have always wondered about how this worked. Seeing you add the different components to the solution and the calculations were very clear. Thank you

  • @billysunerson
    @billysunerson 6 лет назад

    I have spent weeks watching RUclips videos and even trying out the Great Courses plus series on electronics. Your video is hands-down the most educational and clearly explained thing on the internet. Thank you!

  • @szabonandi
    @szabonandi 4 года назад +4

    It took me years to learn this by myself when i was a young electronic enthusiast. You summarized nicely, and totally understandable. Great job!

  • @janussQv
    @janussQv 9 лет назад +29

    Best transistor tutorial I've seen yet. Thanks alot!

  • @andronatroncoulomb9299
    @andronatroncoulomb9299 5 лет назад

    I've been trying to wrap my head around transistors this whole semester of solid state electronics and motor speed controllers. You are a great teacher, I understand why I let the smoke out now.

  • @perspectivex
    @perspectivex 4 года назад

    I'm pretty sure this is the best introduction to how to practically use transistors and explanation of their essentials of how they work I've ever seen.

  • @PaoloTamburini
    @PaoloTamburini 9 лет назад +30

    Really a great video! Clear and simple!
    Thank you!

    • @GianmarioMarchini
      @GianmarioMarchini 9 лет назад

      cos è sta supercazzola? ...hai il dono della sintesi? me la riassumi? :)

    • @PaoloTamburini
      @PaoloTamburini 9 лет назад +1

      La cultura non è per tutti!! 😜

    • @GianmarioMarchini
      @GianmarioMarchini 9 лет назад +1

      a hahaha....preparati per la stagione venatoria che siamo a brucio vah!!!

  • @AM-dn4lk
    @AM-dn4lk 3 года назад +6

    Why couldn't I have had you as my electrical theory teacher. What I learned in 21 minutes with you took me weeks with my teacher....and I probably still did not quite digest and assimilate it well enough. Thank you for your tutorials and lectures. You are educating the world.

  • @JoshuaJayG
    @JoshuaJayG 6 лет назад

    Great tutorial, thank you. After searching for a while, I finally understand the meanings of things like gain and Hfe, and why a diode is important in a solenoid circuit.

  • @stanrock01
    @stanrock01 3 года назад

    I have worked in electronics for 35 years, and so wish I had a presentation like yours when I was starting out. I never really understood transistors that well. Good work!

  • @ProtoG42
    @ProtoG42 9 лет назад +143

    You are a great teacher! Thank you!

    • @bikashdas1182
      @bikashdas1182 6 лет назад +1

      Perfectly done

    • @fernandovelasco5632
      @fernandovelasco5632 6 лет назад

      Just a curious question. Why is your current flow in reverse? Current flows from negative to positive

    • @EdwinFairchild
      @EdwinFairchild 6 лет назад

      fernando velasco mathematically it makes no difference which way current flows. Most people use conventional current flow over electron flow

    • @jonka1
      @jonka1 5 лет назад

      Yes it does but he is talking about CONVENTIONAL CURRENT FLOW where it is imagined that current flows from + to -

    • @chandrakumargurung7034
      @chandrakumargurung7034 4 года назад

      I ve deep interest in electronics i want to learn more...

  • @m3thid
    @m3thid 5 лет назад +7

    This gave me the understanding I needed to figure out a circuit I was banging my head against. Thank you!

    • @billgreen7283
      @billgreen7283 3 года назад +1

      Don't damage the circuit with your hard head.....lol

  • @webkris
    @webkris 10 лет назад +1

    Just what I needed - Transistors are a simple yet madding concept that pushed me to look for a tutorial to get back to basics. Found exactly what I was looking for!

  • @Totogita
    @Totogita 10 лет назад +1

    This is a great video. This explains partially why a joule thief works the way it does. The joule thief resembles a Hartley oscillator. I wish I had a teacher like you when I went to TCI in New York.

  • @nickwalker5115
    @nickwalker5115 7 лет назад +7

    Absolutely fantastic tutorial!

  • @PropaneTreeFiddy
    @PropaneTreeFiddy 10 лет назад +18

    Wow, great job on the video. I'm not too good with electronics, having learned strictly with MCU's early on and using digital PWM instead of actual power management. You have nearly tripled my knowledge on transistors and how they can be used, and for that, I thank you.

  • @marwansallouta2101
    @marwansallouta2101 2 года назад

    Very clear and explanatory, thank you. Never late to watch such educational videos even after a decade. It was brilliant.

  • @IrishDublinDave
    @IrishDublinDave 11 лет назад

    I've been reading about transistors for a few days now and this is the first tutorial that actually makes it clear to me, thank you!

  • @michaelwasiukiewicz2620
    @michaelwasiukiewicz2620 9 лет назад +3

    REALLY good video. Probably the best transistor video I've watched. Nice job!

  • @theBang4thebuck
    @theBang4thebuck 8 лет назад +6

    That was wicked awesome man, thanks a bunch.

  • @tensor131
    @tensor131 Год назад

    very clear - excellent. This is the first vid about transistor calculations that I actually understood all the way through. So many jump over a detail, especially that bit about the 0.7V drop and I think I'm missing something when actually it as the presenter who missed something. This was so very clear - thank you.

  • @GMONEYCLIP64
    @GMONEYCLIP64 7 лет назад +1

    I think I learned more about transistors from this video and a few others on youtube than I have in my senior level college course. Thank you for making this easily understandable and well explained video!

  • @ironnerd2511
    @ironnerd2511 5 лет назад +3

    Thanks for the great tutorial. I wish you would have given details about how to choose the appropriate clamping diode. Also a bit about the rol o the capacitor, and how to choose it. Also, it was unclear to me why NPN instead of PNP. I did not understand the justification.

  • @CYBERlite2010
    @CYBERlite2010 12 лет назад +4

    Finally, a way to control a motor requiring 12 V from an Arduino and L293D. :)

  • @FeuFabricio
    @FeuFabricio 6 лет назад

    I spent a few hours searching for a good explanation about this, and this video was the one who actually did it.

  • @kabadisha
    @kabadisha 7 лет назад

    Probably the single most useful video I have ever found on RUclips. Thanks! Finally I think I actually understand how to use transistors in this context!

  • @hignaki
    @hignaki 6 лет назад +8

    "Yeah but I live in a voltage world how do I get this solenoid to turn on and off"
    Legit LOL'd.

  • @paulvoid3247
    @paulvoid3247 10 лет назад +7

    Actually they DO make 4.3k resistors and they're part of the E24 series (24 values per decade).

  • @paparoysworkshop
    @paparoysworkshop 5 лет назад +1

    Very good explanation. Just the right amount of information for an introductory of how to use a transistor as a switch.

  • @praveenkumar-vx3kw
    @praveenkumar-vx3kw 4 года назад

    this is what i expect . most of the videos simply explain the low to high but you deeply gone. thanks a lots

  • @greencactus8257
    @greencactus8257 7 лет назад +5

    Hi :)
    Great video
    Just one question: why did you say in the beginning that the pnp doesn't have a way to limit its base current? Shouldn't a resistor work as in the case of the npn?

    • @avid0g
      @avid0g 6 лет назад +2

      Andrei Stefanescu, since the logic input signal varies between 0-5V and the emitter is at +12V, the base current can never reach zero. Thus the PNP device is a poor choice here. On the other hand, if the logic -input- output varied 0-12V it would be acceptable.

    • @adon2424
      @adon2424 5 лет назад

      @andrei, think opposite. in an npn a + voltage at the base turns it on. in a pnp a + voltage at the base turns it OFF. 12-5=7VDC across the emitter/base juction, because you have + 12vdc at the emitter.

    • @renakunisaki
      @renakunisaki 5 лет назад

      @@avid0g so you would use that if you needed a 12V signal to control a 5V device?

    • @avid0g
      @avid0g 5 лет назад

      @@renakunisaki
      My point was that an open collector logic device with a resistor pulling up to +12 volt would have the correct output. The logic device needs to be rated to handle the +12V. An NPN would also translate, but with inverted logic.
      One downside to resistor pull-up is the RC time constant rise waveform.

  • @Willam_J
    @Willam_J 5 лет назад +13

    Many years ago, I came up with a way to quickly differentiate between NPN and PNP transistors. I look at the emitter arrow, and if the arrow isn’t pointing inwards, its an NPN transistor. NPN = (N)ot (P)ointing i(N)

    • @ajayrajan8882
      @ajayrajan8882 5 лет назад

      Try to watch Razavi lectures you won't need hacks to remember that

    • @TheArnoldification
      @TheArnoldification 4 года назад

      I learned the difference by just never using PNP *dabs*

    • @henningb2274
      @henningb2274 4 года назад

      ''Points the arrow to the B - it's PNP'' is another way

    • @tomaszwota1465
      @tomaszwota1465 4 года назад

      @@ajayrajan8882 mnemonics is not a bad method to reliably revert stuff though

  • @mtkimbrell
    @mtkimbrell 5 лет назад +2

    Glad I ran across your channel. I am an EE working in the field and also work part time as an adjunct professor. You did an outstanding job in simplifying the explanation of a practical situation of component use. I admit that I wish I could make it that simple for my students. I will strive to be better. ;-) Thank you for the challenge.

  • @ddacombe4752
    @ddacombe4752 2 года назад

    Excellent video showing design and thought process, this has been a huge help. I am just building something to control a water stop valve, but the stuff I learned from books and at university never showed how to design a circuit for a real world situation.

  • @MatterLabz
    @MatterLabz 4 года назад +3

    Back in 1979 my high school electronics teacher taught us to remember NPN = the arrow "Not Pointing iN".

    • @no_one1073
      @no_one1073 3 года назад

      It's still the best way to remember it.

  • @ryannicholl8661
    @ryannicholl8661 5 лет назад +10

    I would always use a MOSFET for power control, and not a BJT. Unless I needed to control the amount of current through the device. BJTs drop voltage and waste power.

    • @stanimir4197
      @stanimir4197 3 года назад +1

      Absolutely. Although MOSFETs have to be driven hard(er) for higher voltages - and even in this case, they would require a pull down resistor at least (5V is high enough gate voltage for most cases to driver 12V). It's harder to explain.

    • @RexxSchneider
      @RexxSchneider Год назад

      A BJT is a perfectly reasonable choice for currents up to 100mA as the voltage drop and power wasted is then negligible. Above that, a logic-level power mosfet is a good choice, and essential if you have a 3.3V microcontroller. Remember that the mosfet will normally cost three times the price of a small-signal BJT.

  • @JosephAMuniz
    @JosephAMuniz 7 лет назад

    Damn! THANK YOU SOOOO MUCH FOR GIVING AN AMAZINGLY COMPREHENSIVE TUTORIAL ON TRANSITORS! I had always wondered why the hell transistors never worked when I applied a voltage at the base, and now FINALLY, IT ALL MAKES SO MUCH MORE SENSE! A MILLION THANK YOU'S!!!

  • @250kent
    @250kent 8 лет назад

    Ben:
    You have no idea how much I appreciate all of your lectures and content. Teaching is to me an extremely complicated concept, yet few teachers understand, and others its intuitive. Like you and Mr. Tublalcain.
    I have found teachers that are habitially curious, love to research and development, will know their subjects in great detail. Because of this, teaching becomes natural, because they want to share the fantastic things that they as well have learned. Sharing the thrills this planet has have to offer.
    Wish I had started earlier, at 27 I still had a second grade education. Finally got a trade and had to go to college, that was insanely hard. But once I learned how to study, I kicked my self in the ass and wondered where in the hell have I been. Then went to college for the next 14 years.
    2 of those years I studied electronic math, really believing it would one day make sense. It never did, this one lecture you just me I learned more than in the 2 years. Thats why I say thanks very much.

  • @mikelemon5109
    @mikelemon5109 7 лет назад +7

    So what do you guys think about biopolar transistor are they getting too old since the mosfet ones got more efficient and popular or is it just me? for all my applications I use FETs and can hardly think about using biopolar yeah FETs are a little more expensive but still the low 'ON' resistance (Efficiency) is well worth it.

    • @hawkcrave
      @hawkcrave 7 лет назад

      "A little more expensive" can add up to a lot more expensive if one is building hundreds of thousands or even millions of widgets, with each widget possibly having many transistors. I would guess most companies simply go with the least expensive option that meets the requirements.

    • @mikelemon5109
      @mikelemon5109 7 лет назад +2

      Yeah but the very high efficiency translates in to a more quality product when it comes to power consumption and simplicity anyway mosfets get cheaper and cheaper over time.

    • @hawkcrave
      @hawkcrave 7 лет назад

      True. It would then depend on what the requirements were, and if reaching higher efficiency is more important than reducing costs. In some cases it would be worth it, in other cases, not so much. But either way, you've made me think about it and I will do some more learning about BJTs and MOSFETs so I actually have a clue what I'm talking about lol.

    • @mikelemon5109
      @mikelemon5109 7 лет назад

      Yeah that would be great!

    • @anullhandle
      @anullhandle 7 лет назад +2

      Michael bjt transistors aren't inferior because they're older they happened to be discovered 1st. Fets are a cousin to tubes which came before that. Tubes still have their place. darpa is still pouring money into tubes. a plain old 3904 bipolar isn't going on the scrap heap any time soon.

  • @Popart-xh2fd
    @Popart-xh2fd 7 лет назад +4

    Nice video. The 2N2222A handles 800mA, meaning that if the restriction depends only on the transistor, the right resistor would be (5 - 0.7)*100/0.8 = 538 (560 ohms). So, the solenoid would be destroyed but not the transistor!

    • @curiosity551
      @curiosity551 5 лет назад +1

      What about the power loss that occurs between base emitter junction due to low resistance? Cant ignore that either.

    • @eelmot63
      @eelmot63 5 лет назад

      right what I was going to say

    • @AlienRelics
      @AlienRelics 5 лет назад +2

      10, not 100. As a switch, base current should be 1/10th of collector current. Read the datasheet.

    • @kissingfrogs
      @kissingfrogs 5 лет назад

      @@AlienRelics Can't help think that Ben has been scarred by destroying many transistors when he started out that he errs on the side of minimizing base current. 1K would do the trick.

    • @AlienRelics
      @AlienRelics 5 лет назад +2

      @@kissingfrogs Perhaps. But beta varies from batch to batch, device to device, temperature, and time. I'd accept 15 or even 20, but 100? That is the rated beta in the active region.
      You'll destroy more transistors with excess Vce drop at higher current.

  • @ManyouRisms
    @ManyouRisms 6 лет назад

    I have no business being here, however I stumbled upon it and watched it all the way through and I think i learned a thing or two along the way. You're a natural teacher, thanks s`much.

  • @piehound
    @piehound 3 года назад

    Thanks for that lesson. I was a mere lad when most audio electronics were tube devices. And that includes TVs. But today i enjoyed upgrading my knowledge with transistors.

  • @beboba2498
    @beboba2498 9 лет назад +6

    in your circuit you need to add resistor between base and ground e.g. 100KOhm to avoid floating base
    Good tutorial though

    • @AppliedScience
      @AppliedScience  9 лет назад +25

      Beboba This tutorial discusses bipolar transistors, which do not have floating bases, and do not need such a resistor. An insulated-gate transistor such as a MOSFET or IGBT have high impedance gates that may need a resistor to tie the gate high or low.

    • @beboba2498
      @beboba2498 9 лет назад +2

      Applied Science Interference from nearest components can easily turn the bipolar transistor on. E.g. if you have high voltage generator.

    • @Akfloatable
      @Akfloatable 8 лет назад

      +Applied Science Can you explain what a floating base, or floating anything is? I see this mentioned a lot when reading about electronics.

    • @AppliedScience
      @AppliedScience  8 лет назад +15

      +Akfloatable Leaving a pin of an electrical component not connected to anything is considered "floating". This means that the voltage at that pin can change very rapidly if there is nothing to sink or source current. Turn on a digital multimeter to its voltage range, and leave the test leads disconnected. You'll see the voltage floats around. For some components like bipolar junction transistors (BJT), leaving an input floating is not particularly bad because the device requires a fair bit of current to operate, so the pin will remain fairly stready by itself. A MOS component requires almost no current to operate so the slightest bit of charge will cause the pin voltage to change, and turn the MOS on and off very rapidly or partially, which is not good.

    • @JasonDoege
      @JasonDoege 8 лет назад +4

      +Beboba BJTs are current activated devices (current from base to emitter establishes the current from the collector to emitter.) If the base is floating, there is nothing to induce a contiuous current from the base to the emitter, an electrostatic charge, while a very high voltage, doesn't have enough charge to induce a large enough current to turn a small signal BJT on. FETs have the issue you discuss where they are voltage activated devices (voltage between the gate and source establishes the current from source to drain) and can easily be turned on by stray voltages. All that said, very high gain BJTs (especially darlingtons) can be briefly turned on by small electrostatic charges.

  • @irvingkurlinski
    @irvingkurlinski 4 года назад +4

    I've got two bread boards. I can make a ham on rye on one of them.

    • @willie_mccoy
      @willie_mccoy 4 года назад

      I tried that once, but the wires kept getting caught in my teeth.

  • @fabriziolavini7457
    @fabriziolavini7457 2 года назад

    I think i watched hundred of videos on the same subject.
    This is the first time that i see someone explaining every single step, all others always take those for granted.
    And abole all i appreciated the first part, when he described the several choices (possible components to use). All the designers make tutorials and never clear why they use a particular component among others and indeed they must know the reason (again take that for graanted).
    I congratulate and thank you.

  • @SirMo
    @SirMo 4 месяца назад

    When I first started in electronics it took me way too long to understand how transistors work. Wish I had this video when I first started. This pretty much covers everything you'd need to know about using plain BJT NPN transistors for use in DC circuits. Best and most concise explanation I've seen on the subject. Well done!

  • @jeffrye7846
    @jeffrye7846 7 лет назад +4

    What you didn't cover was how you chose your diode and which one.

    • @benjaminfacouchere2395
      @benjaminfacouchere2395 7 лет назад

      electronics.stackexchange.com/questions/110574/how-to-choose-a-flyback-diode-for-a-relay

  • @davidcohen9448
    @davidcohen9448 3 года назад

    Excellent video. Explicit, practical, logically ordered, easy to understand , in perfect English.
    Short-practical- utilitarian - easy.

  • @edbuckley1846
    @edbuckley1846 7 лет назад

    Excellent video. For me this was a great refresher of basic electronics theory I learned about 40 years ago. All valid points and well presented.

  • @docfoot316
    @docfoot316 3 года назад

    I learnt alot from this video ,well shown and explained ,and i am 65yrs and still learning ,Wish i had someone like this to teach me in my younger days .Many thanks .

  • @ralphacosta4726
    @ralphacosta4726 2 года назад

    Just what i needed. I have a design concept, but needed some practical info on sizing components. This was perfect. Thank you.

  • @AudioFanMan
    @AudioFanMan 5 месяцев назад

    By far the most simple, complete non confusing and useful transistor lesson i have seen! Thank you...
    Subscription done!

  • @yummyklown9226
    @yummyklown9226 2 года назад

    I was wondering about PNP and NPN transistors. You explained it in like 40 seconds compared to 30 plus minute videos i've been watching. Your videos are so concise and informative! Subbed!

  • @karmajoyst
    @karmajoyst 4 года назад

    That was one of the best transistor videos I have seen. Practical approach and good examples. Excellent!

  • @Caffein780
    @Caffein780 4 года назад

    Thanks man...your ability to explain complex system is awesome. It is fortunate for me that you post these or I'd be lost.
    Thank you.

  • @samjoyce5399
    @samjoyce5399 9 месяцев назад

    I've been looking for a 'straight forward' explanation of how to calculate base resistor values for about 3 days now, and this is hands down the best video I've seen. Now I'm going to see what else you have :)

  • @kaungmyatkhaing7550
    @kaungmyatkhaing7550 3 года назад

    I am an EE student and this video helps me quite a lot for my project. Thank you for the video!

  • @sreekumarUSA
    @sreekumarUSA 5 лет назад

    Thank you. you have explained the circuit and the principle behind it, very clearly to understand to, even, a layman. That is highly appreciated. I have often watched Engineers and Scientists fail to explain most circuits, the way you did.(do) Thanks once again.

  • @boulder89984
    @boulder89984 8 лет назад

    Thank you for explaining that so clearly. You answered many questions for me. I don't follow books well and listening to you really helped a lot.

  • @jakesmith4710
    @jakesmith4710 9 лет назад

    Super informative video. Thanks so much for all the work. As it turns out, I'm designing a circuit to control an air solenoid, and your lecture helped me so much in the design of the drive section. Thank you!

  • @PsyMongazoid
    @PsyMongazoid 3 года назад

    Wow. That was well explained. A no nonsense, real world, application of components to make a smooth working circuit.

  • @davef21370
    @davef21370 5 лет назад

    Brilliant. Up to now I've bought transistors based on someone else's circuit. Now I can choose my own. Thanks very much.

  • @jimadams2473
    @jimadams2473 10 лет назад

    Ben, this is a GREAT transistor tutorial. Very clear and thought out. I use this as a basis for my switching transistor circuit design. Nice Work.

  • @vortextube
    @vortextube 5 лет назад

    Your video connected much of what I knew to be deficiencies in my electronics knowledge. Couldn’t believe how much is in this one piece.

  • @michaelbruceallen3700
    @michaelbruceallen3700 10 лет назад

    I LOVE your teaching ability. You are clear and do not go on boring little tangents like MOST teachers.
    Request: Darlington and AC amplification for transistors and how to bias and chose resiters and caps. Do a series!!! haha love it!!!

  • @Paulina-sy9cp
    @Paulina-sy9cp 6 лет назад

    You have a great talent for teaching. This video was so clear and easy to understand without you dumbing it down. You explained what to do and why as well as what not to do and why as opposed to so many videos that explain what to do without explaining the why. Thank you.

  • @galaxy5am987
    @galaxy5am987 4 года назад

    Hats of to the depth this man goes to for explanation. Amazing.

  • @renakunisaki
    @renakunisaki 5 лет назад

    I've been unsure about how a transistor is actually used for so long and nobody could really explain it, but this answered all my questions!

  • @GMC997
    @GMC997 6 лет назад

    You are a savior! All the other people on RUclips are explaining it to fast, like it would be self explanatory or sth. Thanks!

  • @gojohnnygo6869
    @gojohnnygo6869 4 года назад

    I went to school to repair PCBs many years ago but in my profession I wound up doing repairs at the next level. "Through that board away and replace it". This is usually the cheapest and quickest for repairs of most equipment but that takes all the fun out of it. I still enjoy dabbling with semiconductors but time is not on my side. This great video helped me to refresh the details I need for my dabbling. Thanks, Great video!!

  • @acmefixer1
    @acmefixer1 4 года назад

    Very informative, concise video. One important thing about Darlington pairs that most don't know. The two transistors are connected so that the second transistor cannot saturate, it can't fully turn on. There will always be 0.7 volt or more at the collector. This means that the Darlington pair will always dissipate more power than a single transistor. If the Darlington pair is switching 5 volts, there will be more than 10% of the power wasted as heat in the Darlington pair. So it is not a good choice for a switch. Thanks for the great video.

  • @frankvde8964
    @frankvde8964 10 лет назад

    Best explanation video on simple use of transistors in DC circuit so far...

  • @sastrydasigi7010
    @sastrydasigi7010 3 года назад

    Excellent design exercise. Thanks for taking the time and making a video with the most complete and clear explanation. Best ever!

  • @jojomevo1
    @jojomevo1 4 года назад

    I am sorry for myself lost years in college without understanding pnp / npn ... obviously my instructor was confused himself ! . you made it soo clear and understandable as abc123 .. logic thinking , no extra long talk nor brief short one. just IDEAL explanation. .. many thanks bro ...