Axial Compressors : Why so many stages?

Поделиться
HTML-код
  • Опубликовано: 14 янв 2023
  • The working title was "Compressors 2"
    Watch the original "Compressors" here: • Compressors - Turbine ...
    Also, the compressor stall video is here: • Jet Tech: Compressor S...
    and the follow up Q&A video is here: • Compressor Stall Q&A
  • Авто/МотоАвто/Мото

Комментарии • 382

  • @MamoonSyed
    @MamoonSyed Год назад +167

    I’m an aerospace engineer that works on designing some of this stuff and I just wanted to thank you for this amazing description and explanation. We learn this stuff in textbooks and on the computer all the time, but it’s truly something special to see the people who work on this stuff explain it in a way that really explains what’s going on, so massive kudos and thank you for sharing your experience with a bunch of randos online!

    • @AgentJayZ
      @AgentJayZ  Год назад +35

      Thanks! Your opinion means a lot around here. Although I don't know if the citizens of Jet City really think of themselves as randos...
      Anyway, input from professionals like you is very much appreciated!

    • @danielmarquez8060
      @danielmarquez8060 Год назад +1

      I agree with your comment, question, if i wanted to read up on this subject whst would be a good textbook to read?! Thank you

    • @MamoonSyed
      @MamoonSyed Год назад +4

      @@danielmarquez8060 sorry Daniel, just now saw your message! I think books are a funny topic because it really does depend on what you’re doing and works for you, hence why 10 different engineers will swear by 3 different books, and of those 3, each will appear to be good at its own little niche, be it theory, numerics, lessons learned, etc. Also, none of these books are going to work from the basic math and physics, so one does have to work to understand the concepts and nomenclature. That said, I did pick up a copy of “Principles of Turbomachinery” by Korpela which I have found to be a pretty decent book to have around for me. However, I do have friends who swear by Sultanian too. Moral of the story, there is no perfect book so just grab one and take what it gives you till you can’t take from it anymore. Then grab another.

    • @danielmarquez8060
      @danielmarquez8060 Год назад

      @@MamoonSyed thank you very much i appreciate it

    • @DeliveryMcGee
      @DeliveryMcGee Год назад +3

      @@AgentJayZ I have a friend from high school (son of my Mom's BFF), and I keep asking him how his steam turbine plant works, but he won't tell me anything or even give me a tour. Rude!
      (Joking, he's a Master Chief Nuc on the new USS G. R. Ford) (But I still ask his mom every time she gets back from a Tiger Cruise, "Ooh, did you get any pictures of him at work?" which amuses her and does not amuse her son.)

  • @Mentaculus42
    @Mentaculus42 Год назад +7

    This is such a great channel where I have learned so many practical things that are not available elsewhere.

  • @amadeuss3341
    @amadeuss3341 Год назад +6

    I'm not into jet engines, but the way this guy describes stuff - you can clearly see his passion about his job.
    I don't know why - but i watching his videos completely 😆

    • @amessman
      @amessman Год назад +1

      That's why just about all I know about turbine engines comes from this channel

  • @qcan8468
    @qcan8468 Год назад +11

    AgentJayZ: Here’s your invite to see how we make all those LM2500 blades and vanes. You’ll need to make a cross country trip to New England.

    • @AgentJayZ
      @AgentJayZ  Год назад +6

      Maybe we can discuss it during a high level meeting at Oshkosh?

    • @qcan8468
      @qcan8468 Год назад +7

      @@AgentJayZ high level means discussing over a cold one …

    • @cm9247
      @cm9247 Год назад +1

      ​@@qcan8468 🤣🍻👍

  • @scottmarshall6766
    @scottmarshall6766 Год назад +4

    Another way of describing piston engine static CR is "Swept volume/Combustion chamber volume".
    Thanks for all the years of great content, sure has gone by fast!

    • @AgentJayZ
      @AgentJayZ  Год назад +3

      Yes, it's a joy to look at my older vids, and see how much I have aged.

    • @unclemonster48
      @unclemonster48 Год назад +1

      That’s the scary part we all watch you age but we all think we look the same from years ago. I’ve gathered more gray in the beard and some wrinkles in the face. Life of a industrial chiller mechanic

  • @markniblack7160
    @markniblack7160 Год назад +5

    Love your dry humor and excellent explanations!

  • @SergiuszSwitalski
    @SergiuszSwitalski Год назад +2

    As a software engineer working in aerospace customer training, your channel has provided great insight into the workings of the type of engines I work on everyday. Thanks!!

  • @elixirdeveloper6673
    @elixirdeveloper6673 6 месяцев назад +3

    Hey I'm 15 years old and have an interest in MGTs, your videos help me a lot in understanding thank you

  • @ccserfas4629
    @ccserfas4629 Год назад +2

    Thank you Jay. Takes me back to the good old days of you teaching us the practical concepts of gas turbine engines with your excitement & charisma. Be well sir

  • @martinwarne7183
    @martinwarne7183 Год назад +3

    "Not much of an engineer" by Sir Stanley Hooker is an autobiography of his life. He worked at RR on the development of the jet engine along side Sir Frank Whittle the inventor of the jet engine. Well worth anyone's time.

  • @cmsracing
    @cmsracing Год назад +5

    As a piston guy I love how you explain the "other" engine.

    • @ericksonb06
      @ericksonb06 Год назад

      The way he explained how compression ratio in a piston engine made me yell at the screen. Completely wrong. Compression ratio in a piston engine is a simple math equation. What he's describing is how to measure cylinder pressure. What he's trying to explain is the difference between static and dynamic compression ratios.

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      BE: Blah! I do not care about your theoretical, geometric, cartoon imaginary compression. I am talking about how much the compressor raises the pressure ( or density) of the air going into it. You know, the actual compression of the inlet air.
      Real, not imaginary, sales brochure, wannabe crap.
      What's the CR of a "12.5 to 1" piston slapper, if it has no rings? Not 12.5 to 1, Johnny, er.. Benny
      You comment made me yell at my screen.

  • @beingsentient
    @beingsentient Год назад +5

    The first axial compressor you counted the stages of, if you calculate using the equations you give on your blackboard, gives 1.23 pressure rise, average, across each stage, or 23%. That's more than twice the "10%" you suggested. Anyway, thanks much for your interesting video. It might be of interest to show the geometry of the stators and explain how the increasing area of flow converts kinetic energy to potential energy (pressure).

  • @robinwells8879
    @robinwells8879 Год назад +2

    I suppose it’s like compounding interest in that you’re multiplying the product of the previous stage. Works well for pensions and turbines! You have a gift for imparting this stuff and I hope that you are part of the STEM education process in Canada. Your enthusiasm is infectious and could inspire a whole new generation. 👍👏

    • @AgentJayZ
      @AgentJayZ  Год назад +4

      I guess my effort is right here. I worked as a guest instructor at a nearby aircraft maintenance school, but I'm sure there were some politics involved. I was kept busy doing other things besides speaking about engines, even though one of the classes was just starting their turbine engine module.
      Interesting...

  • @bkbenelli
    @bkbenelli Год назад +8

    "If you can't find the book, don't buy it cause you won't understand it." HA! Had me laughing with that one!

  • @bryanst.martin7134
    @bryanst.martin7134 Год назад +6

    Apparently Axial compressors fall under the helicopter explanation: It beats air into submission. 16X! Centrifugal just makes it real dizzy to comply. Aerodynamics in a nutshell...

  • @tylerw4593
    @tylerw4593 Год назад +3

    I just bought the Aircraft Gas Turbine Powerplants book on your recommendation. As a private pilot flying Cessnas who's working my way to airline pilot, this should give me a big head start in the required learning of these engines. Thanks for suggesting it.

  • @folk.
    @folk. Год назад +6

    A jet engine masterclass. Thank you so much.

  • @scheusselmensch5713
    @scheusselmensch5713 Год назад +4

    You can't fool us, that's the inner spin drum from a Maytag washing machine!!

  • @FLYWHEELPRIME
    @FLYWHEELPRIME Год назад +2

    At one point in my life I serviced most of the LM25s West of Texas and South of Oregon. When they hit the DRMO sites and then out to the natural gas sites, pretty much any former military with turbine experience could work on them.
    One of the saddest months of my life was retrofitting an old destroyer LM25 with an updated emissions kit in Flagstaff AZ. I can still hear the old girl screaming "help! I can't breathe!!" in my sleep 🥲

  • @MuhammadAkmal-xy3sn
    @MuhammadAkmal-xy3sn Год назад +1

    I must really appreciate the way you explain. God bless u. I learn a lot from your channel. Plz continue teaching us

  • @bobrewer202
    @bobrewer202 Год назад +3

    What a great instructor. He speaks well to the laypeople, like me. He doesn’t go too technical as to leave me out.

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      Thanks for the kind words!

    • @bobrewer202
      @bobrewer202 Год назад

      @@AgentJayZ I am a subscriber and just a private pilot. I’m a pretty good shade tree piston engine mechanic, but have been fascinated by gas turbines. Is there a video that shows what N1 and N2 are, and their relationship between them? Also, what is the difference between compressors and stators? In general, I’d like to see how all stages of the engine work together, especially the “turbine” side.I realize that you are not my personal turbine guru and don’t have the time to explain all of this. I will go through your library of videos to see what I can learn and what I might still need help with.
      Again, your teaching style resonances with this dyslexic dude!

    • @AgentJayZ
      @AgentJayZ  Год назад

      All of those topics have been the subject of videos.
      Try the search box on my channel page, and maybe my platlist called Your Questions Answered.
      There used to be an index, but RUclips destroyed in with an update.

    • @bobrewer202
      @bobrewer202 Год назад

      @@AgentJayZ thank you sir. I only subscribed today and will now research your videos. Many thanks

  • @dreddwailing5505
    @dreddwailing5505 Год назад +2

    A really interesting video as always, I would add that the engineers also had fifteen years of improvements in materials science to help them build the components they wanted to.

  • @davidsavage6227
    @davidsavage6227 Год назад

    I find your videos absolutely mesmerizing. Love how you explain how things like this work. Wild that this engine also flies on airplanes.

  • @Vinzmannn
    @Vinzmannn Год назад +2

    Damn fine video. I'm studying Aeronautical Engineering right now and from what I can tell you explained it very well.

  • @neshotah1976
    @neshotah1976 Год назад +2

    Thank You, that was very interesting. When I was in the US Navy, I was a TF30-P-414/A, jet engine mechanic at the Intermediate level. We were able to tear down the engine, (HSI) except the compressor. Did the majority of my work at NAS Oceana AIMD, and also on board a few aircraft carriers. The F-14 was just switching over to the new GE F110 engine when I left Oceana.

  • @SimonWallwork
    @SimonWallwork Год назад +2

    Hats off to the Engineers.I've done 14,000 hours on jets and turboprops- from PT6 to the new Pratt GTF engine on the Embraer 190 E2. Not a shutdown, not a surge, nothing.

  • @greghelms4458
    @greghelms4458 Год назад +4

    My favorite Canadian is back!!

  • @3dartstudio007
    @3dartstudio007 Год назад +1

    Thank you so much for this. Always been interested in these engines. Cheers

  • @markbrown4442
    @markbrown4442 Год назад +2

    Thank you. You made this fun to learn.

  • @afterburner119
    @afterburner119 11 месяцев назад +2

    Still one of the best sources of info. Greetings my friend, been very hectic at work, and once it’s public, I will let you know some more but anyway, wanted to say hi 😻

    • @AgentJayZ
      @AgentJayZ  11 месяцев назад +4

      On the morning of each engine test day, I drink my coffee out of the P&W mug you sent me!

  • @jamslylm
    @jamslylm 11 месяцев назад +2

    Great video, thanks for this amazing and dedicated work

    • @AgentJayZ
      @AgentJayZ  11 месяцев назад

      Thanks. Especially today, that is nice to hear.

  • @zakp.2759
    @zakp.2759 Год назад +2

    Jay's back. Oh yeah. I started working at Pratt & Whitney and these have been a great counterpart.

  • @khuebner
    @khuebner Год назад +2

    Very interesting engines, Jay.

  • @cameronalexander359
    @cameronalexander359 Год назад +4

    I learned sooo much. Thanks so much!

  • @wolfemcgill6091
    @wolfemcgill6091 Год назад +2

    Well done, maritime engineers like myself love this

  • @ben3989
    @ben3989 Год назад +3

    Your channel is great!

  • @tonygaytan9848
    @tonygaytan9848 Год назад +1

    Experience at your purpose in life. Great video!

  • @martinmendoza920
    @martinmendoza920 Год назад +1

    You have the coolest job, I hope to land something similar one day
    ✌️😎

  • @grahamj9101
    @grahamj9101 Год назад +1

    Hi AgentJayZ,
    Thanks for the mention: however, I’ve been slow in commenting, because I’ve been busy with STEM activities, DIY tasks and (name dropping) an e-mail conversation with Ian Whittle. As a matter of courtesy, I sent him the text of an article that I wrote for the latest issue of the Journal of the R-R Heritage Trust. The theme of the article was a rebuttal of the mythology that seems to surround the German axial flow engines, which saw service at the end of WWII. Compared even to Frank Whittle’s first flight engine, the W.1A of 1941, they were inferior in terms of performance, SFC, power-to-weight ratio, life, reliability and handling. Compared to the centrifugal British engines of 1944-45, they were grossly inferior.
    Moving on to the subject of your video, I think you’ve done a good job in explaining stage pressure rise to your subscribers. Although I was responsible for compressor design during my career, I was a mechanical designer relying on the compressor aerodynamicists to specify the blade and vane aerofoil forms. In fact, I am not aware that I was ever told what the stage-by-stage pressure rise was for any of the compressors I/we worked on.
    However, I would expect the stage pressure rise to be similar through each stage of a given compressor, because the same level of aerodynamic technology would have been applied to all the stages during the design process. Having said this, it might tend to increase across a multi-stage HP compressor with a constant annulus outer diameter. My reasoning is that the mean blade speed (in ft/sec or m/sec) increases front to rear, meaning that the stages can do progressively more work on the air. Conversely, the stage pressure rise across a fan booster with a falling annulus line might progressively reduce because of reducing blade speed.
    Are there any compressor aerodynamicists out there who can comment with authority?
    One of the last engines I worked on had an overall pressure ratio of 25:1 across 8 stages (3 stage fan, 5 stage HPC), which works out at a stage pressure rise of around 1.5:1. However, I would expect the stage pressure rise across the HPC to be relatively more than across the fan.
    Finally, having gone to Wikipedia (the fount of all knowledge?) for information, the overall pressure ratios quoted for the PW120, PW127 and PW150 are 12.14:1, 15.77:1 and 17.97:1 respectively. This means that the stage pressure rise of the centrifugal stages of these engines is, at best, comparable to the pressure ratio of the dear old Nene.

  • @foghornleghorn8536
    @foghornleghorn8536 Год назад +1

    Another great video. Thank you.

  • @danielmarquez8060
    @danielmarquez8060 Год назад +1

    Great video ! Thanks for making it!

  • @zapfanzapfan
    @zapfanzapfan Год назад +2

    I stuck my nose into a cut up GE404-variant and was surprised by how few compressor stages there were after seeing your videos with engines with 17 stages. It had 3 fan-stages and 7 compressor stages, the compressor looked absolutely tiny and so did the combustion section. With 10 stages in total and a pressure ratio of 27 each stage should give about a 40% increase in pressure.

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      The engineers do an amazing job, year in and year out.
      From 1951 to1975 or whatever... if you had a ten percent improvement in compressor performance each year, and it works like compound interest... that's definitely a massive increase...

  • @daveyt4802
    @daveyt4802 Год назад +1

    Sure would be cool to take a tour of the shop!

  • @TheDrew2022
    @TheDrew2022 Год назад +4

    @8:36 Compressions ratio in piston engines is even simpler then that @AgentJayZ. Compression ratio is the difference between the volume of the engine cylinder with the piston at the bottom of it's stroke, to the volume at the top of it's stroke. So a cylinder that has a volume of 1L (1000mL) at the bottom of the stroke and has a volume of 100mL at the top of the stroke has a 1000:100 (10:1) compression ratio.

    • @hisheighnessthesupremebeing
      @hisheighnessthesupremebeing Год назад +1

      And it would be a 900cc single cylinder engine or 7.2L if combined in a v8 configuration (439cui in old money)

  • @vermontsownboy6957
    @vermontsownboy6957 Год назад +2

    Great video content. Interesting to hear about the LM 2500 compressor ratio. I just checked the stats for the GE9X engine (powering the new 777X): 61:1 compressor ratio...900+ PSI air delivery at end of compressor section. The compressor section sealing must be an engineering marvel. It also explains why airborn emergency windmilling engine starts have such specific high energy requirements, EG airspeed of 300+ knots at altitudes below ~25,000' (apparently need the denser, lower-altitude air to provide rotational energy to achieve engine RPM to start and maintain engine ignition).
    Related, I had thought the Pratt & Whitney geared turbofan series would offer comparable compressor rations, but they don't. Their advantage is the gearing allowing the fan, compressors, and turbine to operate at optimal RPM. Made me think back a few years to when Rolls Royce's "Ultra Fan" design studies included a pitchable front fan, the efficiency advantages of which could be enormous, including not needing heavy thrust reversers in the engine because the fan pitch could be reversed enough to provide braking. However, a British turbine engineer with RR who regularly commented on this channel (Graham?) stated RR had shelved that design study, reasons unknown.
    Anyway, the point I'm coming to is that some manufacturer, some day, may yet tie all of these promising features into a single turbo-fan engine: enormous compressor ratios; gearing for optimal operation speeds of the fan, compressor, and turbine sections; and a pitchable fan out front for optimum performance from a standing start to high altitude cruise. That would be some engine.

  • @pibyte
    @pibyte 4 месяца назад +2

    I am not an engineer I am an animator and artist - but just the beauty of these diagrams make me really curious about the book by Otis and Vosbury.

  • @raydolinger1980
    @raydolinger1980 Год назад +4

    I worked in a Siemens building doing some commercial electric work and I noticed that they had a bunch of fan blades coming out of an oven that were an aqua green color.. The blades were a weird shape and had dot's and lines carved in them :/ They wouldnt tell me what they were for but I guess it was some type of newer turbine :) It was pretty cool...

    • @JohnnyWishbone85
      @JohnnyWishbone85 Год назад +1

      Sounds like it might be a steam turbine. Modern gas turbines are assembled from individual blades.

    • @raydolinger1980
      @raydolinger1980 Год назад +1

      @@JohnnyWishbone85 They were individual blades johnny they were about a foot long each im pretty sure they were ge90 turbo fan blades, they had a serious twist in them... or the molds for them.. :) It was hush, hush around there... 8-10 years ago..

  • @99bristol
    @99bristol Год назад +1

    I work for THE company, 2500s, 6000s, and LMS. Love your vids.

    • @trialmx
      @trialmx Год назад

      Get back to work

  • @gregwilvert
    @gregwilvert Год назад +1

    Just wanted to thank you, Agent JZ, for your fascinating videos that I’ve enjoyed the last few years. I appreciate your expertise and experience. It pissed me off to see a couple of smartazz comments here.

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      Thanks! ... and those are dumbass comments. Thankfully they are rare.

  • @rokadamlje5365
    @rokadamlje5365 Год назад +5

    Dang thats some longevity, followup to a 10 year old video.

  • @beachbarlouie7522
    @beachbarlouie7522 Год назад +4

    Great your back. I was just thinking I was in need of some over my head jet engine rhetoric. But it's getting drilled in and maybe someday someone will ask me a jet engine question and I will know the answer.

    • @AgentJayZ
      @AgentJayZ  Год назад +3

      It creeps up on you. You know you've been bit when you kick something heavy and brown out of the mud: "What's a stg 1 blade from a J79 doing here?"

  • @dennisbailey4296
    @dennisbailey4296 Год назад +1

    Has there been any hints in the future for the Orenda Iroquois Motor assembly?
    I'm sure it would be a great undertaking to assemble and aquire all the parts, and get it into working condition!! All the best from Surrey

  • @mustafaezberbozan8150
    @mustafaezberbozan8150 Год назад

    Long time I could"t follow you, now I just come acroos with tnis video. I am very happy to know you are still active, thanks for all.

  • @antidecepticon
    @antidecepticon Год назад

    The Detail of the menusha of a turbine that you go into makes me feel like I could show up and actually rebuild an Orenda. ;)

  • @alikartal8426
    @alikartal8426 Год назад +2

    Thank you Jz! I had bought the RR jet book about 30 years ago.

    • @LanaaAmor
      @LanaaAmor Год назад

      Which book?

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      www.pdfdrive.com/the-jet-engine-e185877924.html is one example...

    • @alikartal8426
      @alikartal8426 Год назад

      @@LanaaAmor "The Jet Engine" by Rolls Royce " (fourth edition, 1986). There is a fifth edition, it is available on Amazon: www.amazon.com/gp/product/1119065992/ref=ppx_yo_dt_b_asin_image_o00_s00?ie=UTF8&psc=1

  • @code123ns
    @code123ns Год назад +2

    Great, as always! Just one thing: the CR for a compressor standing still would be 1, not 0.

  • @proffessasvids
    @proffessasvids 8 месяцев назад +1

    Nice one Jay xx

  • @blackbirdpie217
    @blackbirdpie217 Год назад +3

    A cylinder compression ratio is not a pressure test standard, it's a design. Cylinder total volume at bottom center vs. Remaining combustion chamber volume when the piston is at TDC.

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      Maybe you should review the procedure for doing a "compression test" on a piston engine.
      My racebike was 10.8 to 1. I'm sure you understand what that means.

    • @blackbirdpie217
      @blackbirdpie217 Год назад +2

      @@AgentJayZ I'v been a tech for over 20 years, I've done many compression tests. You could look at it either way, but if you have a car with a known design you can publish the compression ratio in a service manual, and they do, even though they have no idea what the tested pressure is. It's a ratio, not a PSI. only a test can reveal how close the pressure might come to the design expectation. But does a compression ratio relate linearly to a pressure ratio? I mean if the CR is 10:1 does that mean the pressure will be 10 bar or 147 psi? If given only one stroke of the piston it will be rather disappointing. And every 4th stroke of the piston is only one stroke, not seven strokes to build max pressure which is my standard for a test. Even a perfectly sealed piston cannot produce 10 bar on a single stroke. Still the engineer assigned it a 10:1 ratio. Only a test of accumulated strokes can come close because of the extreme compressibility of air.

    • @ashbridgeprojects6916
      @ashbridgeprojects6916 Год назад +1

      @@blackbirdpie217 "But does a compression ratio relate linearly to a pressure ratio? I mean if the CR is 10:1 does that mean the pressure will be 10 bar or 147 psi?" - in a nutshell, yes you're correct. This is called Boyles law, or the ideal gas law. In reality the gas heats up when it's compressed and so the law is not 100% true. Boyles law states that, given constant temperature, a change in volume will cause an inversely proportional change in pressure. So 10:1 volume change will cause 1:10 pressure change.

  • @oscarzt1652
    @oscarzt1652 Год назад +1

    nice orenda rocker cover on the compressor rotor there

  • @pinkdispatcher
    @pinkdispatcher Год назад +3

    I'm also very sceptical about the 2.5 per stage. That would mean that a modern engine with 60:1 overall ratio would need only 5 stages. That doesn't seem right. 1.5 is more like it, that fits with a reasonable number of stages to get to 60:1.

  • @UncleKennysPlace
    @UncleKennysPlace Год назад

    Even though my day job involves the largest "blades and vanes" flying, I still love this channel.
    Is that a valve cover from the ill-fated Orenda recip? It was supposed to replace small turbines for greater efficiency.

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      Yes. That valve cover is from the Orenda 8. It was sent by a friend of Jet City. It's main feature was not efficiency, but up front cost. Is was/is less than half the price of a PT6.

  • @ngauruhoezodiac3143
    @ngauruhoezodiac3143 Год назад

    I recall that the JT 3 engine that was used in the 707 had 16 stages in the low speed compressor and another 9 in the second stage compressor.

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      Wiki says 8 LP and 7 Hp, with the first two stages of the LP being enlarged to create a 2 stg fan.
      I haven't worked on the engine, and i don't have access to the parts catalog.

  • @JohnnyWishbone85
    @JohnnyWishbone85 Год назад +1

    Recovering engineer here. I put myself through engineering school working as an operator at a cogen plant with a 2500. Then I mostly worked on steam turbines, and then a few startups before I decided engineering wasn’t for me. I actually loved the startups, but it wasn’t a sustainable way to make a living. Anyhow, this video reminded me of why I fell in love with the field to begin with, and I’d like to thank you for that.
    P.S. There are calculator apps that are available for your phone that use RPN. PCalc is the one for iOS, and RealCalc for android. Both are about ten bucks the last time I looked, but it’s worth it to me not to have to dumb myself down to use the standard calculator apps.

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      Great to hear from an experienced pro. Thanks!

    • @JeffMTX
      @JeffMTX Год назад

      I use hp41cv on the iphone

  • @fuckyoutubengoogle2
    @fuckyoutubengoogle2 Год назад +2

    14:45 "Exponentiate" is the verb you're looking for.

  • @thedarker9581
    @thedarker9581 Год назад +2

    Would be interesting to see more on connection between compressor/turbines and shafts

    • @AgentJayZ
      @AgentJayZ  Год назад +3

      See my video called What holds it together...

  • @madnessmaker6162
    @madnessmaker6162 Год назад +2

    Another great video,as someone who designs and fabricates perf. turbosystems and fuel management systems for automotive and motorcycles for 30 plus years, I can relate to many terms used in the turbine engine industry, pressure ratios,compressor stall etc.
    I have always been fascinated by them and wished to own one at some point for use in a perf alu jet boat.but still need to learn much more about them.
    Similar to what you mentioned about advances in technology in the efficiently of turbines, the same has applied to today's turbochargers in compressor and turbine design. Some of the higher level gas engines are able to achieve boost pressures above 80 psi+ on single stage compressors .
    As far as turbine compressor stages being of different sizes, would you think that it may be done that way to compensate for changes in air temp and density as the air is compressed through each stage?
    Also ,I would assume somewhere there are compressor maps for the stages of turbine engine compressors? (that are most likely locked away for only the most special to see.. ha)
    Keep up great wk. I'm def going to invest in the books you mentioned. 👍

    • @hopkinsroger
      @hopkinsroger Год назад

      Check out Nye Thermodynamics for high performance alu boat

  • @hazza2247
    @hazza2247 Год назад +2

    i like this video a lot

  • @DiveTunes
    @DiveTunes Год назад +1

    Excellent video, Thanks! Question sir-- Do you consider the addition of fuel and combustion to be an additional stage of compression or pressure increase? I have watched your videos about the Bernoulli effect and that it is more velocity, not pressure, that we're after at the backend. I'd be interested on your perspective of the role of compression all throughout the engine.

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      You may be interested in my recent video called Combustion Pressure.
      If you go to my channel page and type those words into the search box...

    • @DiveTunes
      @DiveTunes Год назад +3

      @@AgentJayZ Thank you! Just watched it, must have missed it along the way. I stand better edumacated. Thank you.

  • @grahamj9101
    @grahamj9101 Год назад +4

    PS I'm going to be mildly critical of the use of the term 'compressor ratio'. The term that I learned as a student in the 1960s was 'pressure ratio'. as used in my text book of the time, 'Gas Turbine Theory', first published in 1951. During my career, the term 'overall pressure ratio' came into use, to cover engines with more than one spool.
    And, of course, use of the term 'compression ratio' in relation to a gas turbine engine is quite wrong.

  • @ncktbs
    @ncktbs Год назад +3

    i believe the current the diesel drag race record holder runs 90-120 psi boost and rebuilds the engine every weekend

    • @AgentJayZ
      @AgentJayZ  Год назад +7

      As we worked out here, the LM2500 uses over 500 psi of boost at full output of over 35 thousand Hp. It can do that for over ten thousand hours before needing an overhaul.
      I find it amazing to see diesel trucks outperforming gasoline powered race cars at the drags.

  • @adrianglessner5979
    @adrianglessner5979 Год назад +1

    I am very interested in learning more about jet propulsion units. Can you recommend a few more books other than the 2 mentioned in this video? Or someone in the comments. Thank you for the informative videos you do, I really do appreciate the knowledge you share for free.

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      I just put Jet Propulsion in the Google search bar. The results were impressive. NASA is free. If you are interested in learning about the subject, There's a lot of great, free info out there.
      From there on, it's up to you.

  • @greasemonkey7744
    @greasemonkey7744 Год назад

    great vid i actually came up with a question after seeing this, does the aircraft speed contribute to the cdp? thinking that at altitude with lower density and pressure the forward speed (inlet velocity) may be part of what maintains that cdp in lower density environment by increasing intake volume

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      CDP is influenced by inlet air velocity, general condition of the compressor airfoils, altitude, inlet air temperature, and engine rpm.

  • @squid0013
    @squid0013 Год назад +2

    Most automotive engines can handle around 15lbs boost, built engines get up to 30-45. Most diesels will hold 45 from the factory, and upwards of 80 some as high as 100psi in built form

  • @antidecepticon
    @antidecepticon Год назад +1

    You are a hardcore nerd, but that is who I want making the stuff that makes me float across the planes ...

  • @aeyde
    @aeyde Год назад +2

    great video

  • @Leighvander
    @Leighvander Год назад +3

    Very interesting video! THX! But isn't the "static ratio" 1 (instead of 0)?

  • @mohammadwasilliterate8037
    @mohammadwasilliterate8037 Год назад +1

    *Interesting stuff...*

  • @llewellynquay9463
    @llewellynquay9463 7 месяцев назад

    *Awesome Possum!*

  • @andrekemp5059
    @andrekemp5059 9 месяцев назад +1

    How dose the sealling of air work? Labyrinth seal

  • @lewistempleman9752
    @lewistempleman9752 Год назад +5

    Professor compressor

  • @rogerbeck3018
    @rogerbeck3018 Год назад

    as always - read more than one book, great advice about any subject but particularly jet engines

  • @villiamo3861
    @villiamo3861 Год назад

    Nice vid. Thanks.

  • @aidantawney4776
    @aidantawney4776 Год назад +1

    I know you said that you are a technician and not a designer, but I was wondering if you could help me or point me towards a resource for a question I have. So when doing some research on commercial jet engines using this book called, "Turbofan and turbojet engines : database handbook", I noticed that they tend to have a higher pressure ratio when they are at cursing altitude and speed then when they are at a static max thrust at sea level. I was wondering why this was the case, for example the CFM56-2C1 on the DC-8 has a overall pressure ratio of 24.7 at max power, and a pressure ratio of 31.2 at cruise. I was thinking it could be ram pressure but could it really be that much of a impact? Or is it because of something like variable stators and guild vanes? I would appriciate any help you can give me.
    Also completely unrelated but I really enjoyed the part at 27:30

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      Well, if the throttle setting was the same, the only differences are ambient air pressure, being higher at standard test conditions ( sea level), and air speed, being zero at standard test conditions.
      At cruise, throttle setting is lower, ambient pressure is lower, and airspeed is higher, compared to test conditions.
      I would expect pressure ratio to be lower, but ram effect can really make a big difference.
      If the two conditions were both flying, max power vs cruise power at the same altitude, I would expect pressure ratio to increase as power setting increases.
      There is a very inexpensive manual out there for the DC-8 super 70 ( I think it's called that), That has a section on The CFM56 engines.
      I found mine at eflightmanuals.com

    • @aidantawney4776
      @aidantawney4776 Год назад

      @@AgentJayZ ok I will take a look at it. Thank you I will look into that

  • @jhyland87
    @jhyland87 Год назад +2

    5:56 Something I'm noticing that I'm a little curious of... I can see how the air would get compressed as it goes from one stage to the next by looking at where the stator vanes would go, and from bottom to top (front to back) you can see that area gets smaller and smaller. But if you look at the last 2 rows where the stator vanes would go (so the two gaps between the compressor stages at the top), it doesn't get any smaller at all. How does that compress the air? Or does it just hold the air at the same compression while passing it back?
    Sorry for the long comment. Great channel - Amazing content :-)

    • @AgentJayZ
      @AgentJayZ  Год назад +3

      The narrowing of the gas path does not cause the compression. I have a video on that exact point. The narrowing is there to maintain the valocity of the compressed air, which is smaller after it is compressed.
      The reaseon the last two stages don't really narrow, is to bring the speed down a bit while the air is still being compressed. This process is continued in the diffuser section, immediately after the compressor. There, the air is further slowed as the velocity energy is converted to pressure energy by the diverging path.
      Yes, as the path widens up, the air slows down and increases in pressure.
      Seems weird, but remember the compressor is not a passive duct. It has a tremendous amount of power being added to it by the spinning rotor.
      Aerodynamics are quite counterintuitive, and you might need to do some further reading to fully understand what's going on in an axial compressor.
      Try Googling those two words...

    • @jhyland87
      @jhyland87 10 месяцев назад

      @@AgentJayZ thanks for the detailed reply. I haven't watched all of your videos (yet!), so I'll check out the one you mentioned.

  • @charlesdunn4634
    @charlesdunn4634 7 месяцев назад +6

    Jay I think your name would be more appropriate as - ProfessorJayZ

    • @AgentJayZ
      @AgentJayZ  7 месяцев назад +4

      Thanks, but I'm really only an enthusiastic wrench turner with an interest in how these things really work.

  • @squid0013
    @squid0013 Год назад +1

    Im assuming the combustor cans contribute to efficiency as well? Modern high performance engines have an anular combustor housing which i assume allows better burn and better flow.

  • @TeemarkConvair
    @TeemarkConvair Год назад

    yup,, thats Jay

  • @Saszynski
    @Saszynski Год назад +1

    Hey Jay :)
    I have a question.
    how often do you see "MacGyver style" fixes in the engines when you stripping them for overhaul?
    As a car mechanic sometimes I cant believe in what I see, been wondering if same thing might apply to gas turbines?
    Cheers.
    Greets from Ireland.

    • @Saszynski
      @Saszynski Год назад +1

      Just one thing. By "MacGyver style" i mean temporary solutions.
      Btw, I think MacGyver was one of the best tv shows in 80's.

    • @AgentJayZ
      @AgentJayZ  Год назад +7

      That's one of the things that I like most about working on jets. All examples of each model are identical. It's obvious when even one fastener is non standard, or one clamp is missing. If such an irregularity is found, the question becomes " how deep does this poor decision making go?" The owner is notified, and everything is reconfigured to the way it should be.

    • @Saszynski
      @Saszynski Год назад +1

      @AgentJayZ Now you us woke up my curiosity.
      have you any examples which you could show in upcoming video?
      Thanks.

  • @paulnix9778
    @paulnix9778 Год назад

    Great video ... plus thanks for the info on the books (an electronic .PDF is OK sometimes but being able to make notes in an actual paper book can be very helpful). (comment) I'm an old guy and I think in English units and then convert to Metric when needed. (question) I've read that modern 3D printing is allowing the development of cleaner burning jet engine fuel nozzle spray patterns. Is there any reason that more efficient (cleaner burning) fuel nozzles couldn't be retrofitted to existing engines so long as the fuel flow rate of the new nozzle design is in the same range that the old engine runs at ?

    • @AgentJayZ
      @AgentJayZ  Год назад +1

      The efficiency of the combustion is a result of airflow management by the combustor liner, and interaction with the fuel nozzle. Everything is optimized, so redesigning a fuel nozzle won't help, unless the liner is also changed.

  • @Wyld1one
    @Wyld1one Год назад +2

    Oticed s difference between the 1500 & the 2500. The blades - the 1500 has more or less straight blades( from inner to outer). They look like the walls of a straight cylinder. the 2500 those blades also have a twist from inner to outer.
    When i say inner to outer thst is from the center of rotation of the engine to the outer skin.

  • @TheHalloweenmasks
    @TheHalloweenmasks Год назад +2

    I understand that there is a phenomenon in the rotor blading called the "deviation angle" of the gas, does this exist in the stator?

    • @AgentJayZ
      @AgentJayZ  Год назад +3

      As a technician, the nuances of aerodynamic design are outside my area of experience and understanding.

  • @DeliciousDeBlair
    @DeliciousDeBlair Год назад +1

    One of the factors that limits a plane's maximum altitude [its 'ceiling'] is how much pressure the engine can achieve in rarefied atmosphere.
    This was the first thing people started to notice when they tried flying high to avoid the Germans in WW2 so it was pretty much known by the time jet aircraft were first made, but they had to [sort of] 're-learn' it for high speed flight, as a few other factors changed how much air one was having to compress, and how the plane managed it.

    • @Dreamer3K
      @Dreamer3K Год назад

      Yes.

    • @rik999
      @rik999 Год назад +1

      Airplane ceiling limits were noted in WW1 when German Zeppelins avoided British fighter planes by flying at high altitudes. The British countered by fitting their planes with superchargers which lead to a technical arms race that had the Zeppelins flying and bombing from 30,000 ft and both sides flying with oxygen.

  • @tashfeenuk
    @tashfeenuk Год назад +3

    Can you please make a video explaining the function of pipes that are on the outer casing of aero-engines and industrial gas turbines.

    • @AgentJayZ
      @AgentJayZ  Год назад +4

      I've made a few videos about some of the systems, because there's a lot of things going on. I could try to do an all-inclusive description, but it won't be very detailed. Stay tuned.

    • @tashfeenuk
      @tashfeenuk Год назад +1

      @@AgentJayZ Thank u, that would be good. Actually, for this subject area, I'm unable to find much information in books or research papers. I can figure out the bleed pipes, but there are many other pipes and accessories that Im stuggling to understand.

    • @AgentJayZ
      @AgentJayZ  Год назад +4

      Research papers will never deal with the specifics of hardwate of particular engines.
      Introductory texts are full of info, in a generic way, about the many external accessories of most common engines.
      The place to find specific info that you are looking for is on the overhaul manual for whatever engine you are curious about.
      Search for "(pick an engine) manual", and you will find that many are for sale online. The most recent and modern engines will not be available, but there's many out there...

    • @tashfeenuk
      @tashfeenuk Год назад +2

      @@AgentJayZ thank u for the info, will check 🙂

  • @PerfectInterview
    @PerfectInterview Год назад +3

    Amazing to realize that something that small can generate the equivalent power of 40,000 horses. Pre industrial civilizations relying only on animal and human muscle power could not begin to imagine generating power like that. And rocket engines can generate the equivalent power of millions of horses!

  • @alpiinoo135
    @alpiinoo135 Год назад

    Thanks!

  • @thehobbyguy7089
    @thehobbyguy7089 Год назад +2

    I've always wanted to build a model jet engine for an RC jet with an axial flow. All commercially available RC jet engines are centrifugal flow. I just wonder if it's possible. I have seen a few projects take shape but ultimately fizzle out or disappear. I would think that today with the availability of 3D printing, it would have been done.
    What say you AgentJayZ, is it possible to miniaturize an axial flow jet engine for RC, the thrust it would need to create would be about 50lbs?

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      Please see my video "so you want to design a jet engine".
      Also, Williams makes small axial flow turbojets and turbofans for missiles, starting at about 200Lbs thrust.
      Check out their designs, and see if you can get a price.

    • @thehobbyguy7089
      @thehobbyguy7089 Год назад +2

      @@AgentJayZ I am not looking to design and build an engine all on my own, as you state in your video, and rightly so, it would take a team of people to do so. I guess it sounds outlandish when I say "I want to build" when what I really mean is to want to build an RC aircraft with an axial flow engine and purchase the design and parts for said engine in said model. The problem is, there does not seem to be anything available. I have written William in the past and no surprise I did not receive a reply.
      The F121, which is the smallest William engine I can find reference to, weighs 50 pounds, which is too heavy for an RC aircraft. It's also 8 in diameter which is also probably too large. The largest RC centrifugal flow engine is about 96 lbs of thrust, and weighs about 8 lbs, is 5 3/4 inches in diameter.
      It would seem there is no axial flow RC engine in existence, nor a working design that can be assembled. I'm sure Williams of Pratt has something sitting in a digital file somewhere.
      From what I have seen, and I have been peeking into the space for about 20 years, it is relatively easy to home kit a centrifugal flow model jet engine from commercially available parts, usually lifted from a car turbocharger, the burn can is also fairly easy to make and there are many designs readily downloadable, all that said, it is not the same for the axial flow.
      I am not looking to build a better mouse trap and get rich, far from it. An RC model is a hole into which you throw money. I just want the most accurate model that can be built by human hands.

  • @christinadaly7743
    @christinadaly7743 Год назад +1

    Curls my toes to think about those compressor rotors could " fall over " on the floor !

    • @AgentJayZ
      @AgentJayZ  Год назад +4

      They are a few hundred kilos in weight, and no clumsy people are allowed in the shop. It would take a large earthquake to knock one over.

  • @turbojoe9554
    @turbojoe9554 Год назад

    great video. One question. Does inlet pressure change when an aircraft is traveling at, say, mach 0.5? And does that affect CDP? I realize altitude will affect things but I am curious about inlet pressure at speed in an aircraft application. Obviously a stationary application is not questioned -it is constant atmospheric inlet pressure as the unit is not in motion

    • @AgentJayZ
      @AgentJayZ  Год назад +8

      Most airliner engine nacelle inlet ducts are designed as diffusers. As the aircraft moves through the air, the duct helps to increase the air pressure in front of the engine, "at the face of the compressor".
      Because the compressor is consuming huge quantities of air, the air pressure in front of it is lowered below what it is 10 feet or more in front of it.
      The diffusion of the airstream moving into the duct, raising the pressure is called ram recovery.
      After about Mach 0.5, the pressure at the face of the compressor is actually greater than ambient.
      You could say that ram recovery becomes ram boosting.

    • @turbojoe9554
      @turbojoe9554 Год назад +2

      @@AgentJayZ excellent description. Thank you

    • @DeliveryMcGee
      @DeliveryMcGee Год назад

      @@AgentJayZ That's why the SR-71 had the moveable spikes in the intakes to maintain that balance/kill the shockwaves and basically make sure the ram pressure was enough to make it run like a bat out of hell but not blow out the fire, right?
      Also re: ram boosting: the "ram-air "scoops on the hoods of old musclecars that sealed around the air filter .. didn't really do anything below 200mph. And even then, you could throw a blower from a two-stroke diesel (or an exhaust-driven power turbine) on the intake and actually pressurize the intake.

  • @InssiAjaton
    @InssiAjaton Год назад

    I certainly am not an aerospace or aviation engineer. I just have been accused of being insanely curious, including all kinds of topics outside of my own field. I have been happy to follow various presentations and histories of jet engine development from the WW2 inventions to the modern era. It looks like the RB211 front fan is mostly serving the bypass purpose, which reduces the output side turbulence. That turbulence used to cause noise and waste fuel. I believe I see in the picture the large bypass channel all around the engine. Or am I wrong?

    • @AgentJayZ
      @AgentJayZ  Год назад +2

      Not wrong. The RB211 was one of the very first high bypass airliner engines. 80% of the thrust is created by the fan.

  • @robert5
    @robert5 Год назад +1

    Great video. How about you do one on the SR 71 engines.

    • @AgentJayZ
      @AgentJayZ  Год назад +8

      Those engines are no longer used. I can only show and demonstrate the engines I work on.