Solving 3a+5ab+b=39 | A Diophantine Equation

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии • 41

  • @WahranRai
    @WahranRai 3 дня назад +1

    1:34 Dont stop !
    5b + 3 is a factor then : multiply both sides by 5 and add 3 to both sides --->
    15a(5b + 3) + 5b + 3 = 39*5 + 3 ---> (15a + 1)*(5b+3) = 198 without using fractions !

  • @texwiller7577
    @texwiller7577 4 дня назад +3

    You forgot:
    a = 2, b = 3

  • @dan-florinchereches4892
    @dan-florinchereches4892 4 дня назад +2

    I think we can set up the equation as
    b(5a+1)+3/5(5a+1-1)=39
    (b+3/5)(5a+1)-3/5=39 multiply by 5 so
    (5b+3)(5a+1)=195+3
    (5b+3)(5a+1)=198
    Now if a and b are integers we can get a few pairs of solutions, as 198=2*99=2*3*33=2*3^2*11
    (a,b)€{(0,39)from1*198,(-20,-1) from -99*-2,(13,0) from 66*3,(-2,-5) from -9*-22,(2,3) from 11*18,(1,6) from 6*33}

  • @agytjax
    @agytjax 3 дня назад +1

    Thank God! Today he did not call the second method first 🤣🤣

  • @EdjarbasOliveiraJunior
    @EdjarbasOliveiraJunior 4 дня назад +2

    You forgot (1,6); (-2,-5) and (-20,-1).

  • @reconquistahinduism346
    @reconquistahinduism346 4 дня назад +4

    a=2, b = 3. So a+b = 5.

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 дня назад +2

    a+b=(39-b)/(3+5b)+b...b=6(a=1),b=3(a=2),b=0(a=13),b=-1(a=-20),b=-5(a=-2)

  • @linoubennani1004
    @linoubennani1004 4 дня назад +4

    You forgot another solution : a=1, b=6

    • @Taric25
      @Taric25 3 дня назад +1

      a + b = a + (39 - 3a)/(5a + 1), where a is any number, except -⅕. Nowhere in the thumbnail did it specify that a and b have to be integers.
      If they must be integers, then there are 5 solutions, where a equals -20, -2, 0, 1, 2 or 13, while b equals -1, -5, 39, 6, 3 or zero, respectively.

    • @robertveith6383
      @robertveith6383 3 дня назад +1

      ​​@@Taric25 -- *Thumbs-down.* Because it is a Diophantine equation, that means, in part, we are only interested in integer solutions. Also, you wrote out six solutions, not five. Do not spell out 'zero" in this context. Write it just like the others.

    • @Taric25
      @Taric25 2 дня назад +1

      @@robertveith6383 If I apologize, would you hug me?

  • @元兒醬
    @元兒醬 4 дня назад +3

    1,6

  • @ChristopherEvenstar
    @ChristopherEvenstar 4 дня назад

    I liked it, and I liked the use of mod to examine factors of 198. Thank you!

  • @dmtri1974
    @dmtri1974 2 дня назад

    Nice solution especially the first method, but why you asked in the most begining to find a+b=? and not all the solutions? Can you find the a+b without finding beforehanded all the solutions?

  • @E.h.a.b
    @E.h.a.b 4 дня назад

    Third Method (trial and error)
    3 a + 5 a b + b = 39
    a (3+5 b) = 39 - b
    a = (39 - b)/(3+5 b)
    Now set (b) value and check for resulting (a) value as integer
    b a
    ----------------------
    0 39/3 = 13
    1 38/8 err
    2 37/13 err
    3 36/18 = 2
    4 35/23 err
    5 34/28 err
    6 33/33 = 1 // No need for further checks, all results will be < 1
    Just one only check for (b) = 39
    39 0/?? = 0
    Final results of (a,b) = { (0,39), (1,6), (2,3), (13,0) }

  • @Qwentar
    @Qwentar 4 дня назад

    Second method, at step 1 you missed multiplying the right hand side (39) by 5 (195). Then for step 2 you add 3 to both sides to get the 198 you were looking for.

    • @SyberMath
      @SyberMath  4 дня назад

      Yep! You're right! 😅

  • @JamesKang95
    @JamesKang95 4 дня назад

    3a•5+5ab•5+b•5=39•5
    (5a+1)(5b+3)=195+3=198=2•99
    =2•3•3•11=11•18=6•33
    =1•198=66•3
    5a+1=11,5b+3=18
    5a+1=6,5b+3=33
    5a+1=1,5b+3=198
    5a+1=66,5b+3=3

  • @ronbannon
    @ronbannon 4 дня назад +2

    (−20,−1), (−2,−5), (0, 39), (1, 6), (2, 3), and (13, 0) are the only integral solution. I suggest rewriting as a rational function to see that you have a minimal set of values to choose from. A visual, even a rough one, often offers insight.

    • @Taric25
      @Taric25 3 дня назад +1

      You said integral. You meant integer.

    • @SyberMath
      @SyberMath  3 дня назад

      Very cool!

    • @ronbannon
      @ronbannon 3 дня назад

      @@Taric25 Integral solutions refer to solutions of equations that are integers.

    • @Taric25
      @Taric25 3 дня назад +1

      @@ronbannon Integral solutions are solutions of definite or indefinite integrals. Claiming otherwise introduces ambiguity.

  • @SrisailamNavuluri
    @SrisailamNavuluri 4 дня назад

    3a,39 are multiples of 3
    So b=0,3,6,9,..
    a=39,2,1, fractions
    So (a,b)=(39,0),(2,3),(1,6)
    For b=-3,-6,-9,
    a=fractions.
    There are3 pairs of integer solutions.

  • @neuralwarp
    @neuralwarp 4 дня назад

    If you're going to "solve" it by trying all the possibilities, you could just write a short piece of program code.

    • @SyberMath
      @SyberMath  4 дня назад

      Can you do that for me? 😁

  • @Qermaq
    @Qermaq 3 дня назад

    5, 7, 13, 39. What a headache!

  • @Don-Ensley
    @Don-Ensley 4 дня назад

    problem
    3a + 5ab + b = 39
    a+b = ?
    Factored into
    (5 a + 1) (5 b + 3) = 198
    = 11 • 18
    = 6 • 33
    Got
    (a, b) ∈ { (2, 3), (1, 6) }
    answer
    a+ b ∈ { 5, 7 }

  • @damiennortier8942
    @damiennortier8942 4 дня назад

    "put a little 1 here"
    I pretty sure that it was a normal 1 😅

  • @SIB1963
    @SIB1963 3 дня назад

    RHS is 195, not 198.

  • @sidharthd4400
    @sidharthd4400 4 дня назад

    Nice

  • @part6133
    @part6133 3 дня назад

    Should have been pos. integers only

  • @InnocentNeuron
    @InnocentNeuron 4 дня назад

    (1, 6), (2, 3)

  • @Taric25
    @Taric25 3 дня назад +1

    a + b = a + (39 - 3a)/(5a + 1), where a is any number, except -⅕. Nowhere in the thumbnail did it specify that a and b have to be integers.
    If they must be integers, then there are 5 solutions, where a equals -20, -2, 0, 1, 2 or 13, while b equals -1, -5, 39, 6, 3 or zero, respectively.

    • @SyberMath
      @SyberMath  3 дня назад

      chk the title

    • @Taric25
      @Taric25 3 дня назад +1

      @SyberMath Fantastic, did I say thumbnail or title? I said thumbnail, thank you very much.

    • @robertveith6383
      @robertveith6383 3 дня назад

      You're being corrected again, because you don't know what you are talking about. In the thumbnail, Diophantine equations refer to those where we are only interested in integer solutions.

    • @Taric25
      @Taric25 2 дня назад

      @robertveith6383 It didn't say that in the thumbnail. It said that in the title.

  • @sidharthd4400
    @sidharthd4400 4 дня назад

    RHS x5