Computer Vision Basics: Hough Transform | By Dr. Ry @Stemplicity

Поделиться
HTML-код
  • Опубликовано: 13 дек 2024

Комментарии • 46

  • @haoshan7253
    @haoshan7253 3 года назад +6

    I used hough transform in my work, now I understood the theory behind! Thank you so much Dr. Ry

  • @theanamex9969
    @theanamex9969 9 месяцев назад +1

    This is excellent. Thank you for taking the time to explain why we are learning each step. Much better than my university class which I paid $1,000 for.

  • @hermeticGreen
    @hermeticGreen 4 года назад +25

    "Simply put"

  • @mohamedgbreel8618
    @mohamedgbreel8618 3 года назад +1

    basically simply put ... تحيا مصر يا دكترة
    THANKS for the super excellent explanation

  • @anonymusunknown9199
    @anonymusunknown9199 3 года назад +2

    Very clear explanation. English is not my native language and you still made me understand it tired at 10pm. Excellent material, thank you Sir!

  • @enricocaffagni6352
    @enricocaffagni6352 2 года назад +1

    Thank you very much Dr. Ry!

  • @donaldduck5731
    @donaldduck5731 4 года назад +2

    Thank you, you are a gentleman and a scholar

  • @annac625
    @annac625 3 года назад +1

    It's clear!! Thank you Dr. Ry. 😊

  • @WahWahWeeWah
    @WahWahWeeWah 3 года назад +1

    This was the best video explaining this. Thank you for also explaining the Hough space.

  • @parthsachan1130
    @parthsachan1130 3 года назад +3

    Damn he looks like Leonard from TBBT.

  • @ronytesler
    @ronytesler 4 года назад +3

    Very well explained, thanks. I think the only thing that wasn't clear enough is how you know to go along with the blue and yellow lines. How the algorithm knows there are two horizontal lines.

  • @ethtrader
    @ethtrader 2 года назад +1

    very clear explanation! you kinda remind me of leonard from bigbang theory 😅 brilliant people

  • @Marin-ub5oj
    @Marin-ub5oj 3 года назад +2

    simply put, this is a very good video. Thats a joke, thank you so much

  • @njbl6443
    @njbl6443 4 года назад +1

    Very helpful , thank u sir

  • @johannreiter1087
    @johannreiter1087 3 года назад +1

    very clear and helpful explanation, thank you very much!

  • @barrie1636
    @barrie1636 4 года назад +1

    You're the best dude

  • @tinprojects695
    @tinprojects695 4 года назад +1

    Great explanation!

  • @lamaitani6992
    @lamaitani6992 4 года назад +1

    this is very helpful, thank you!

  • @2806milinda
    @2806milinda 4 года назад +1

    Thank you. That was clear!!!

  • @karakson
    @karakson 3 года назад +1

    Cool

  • @mashmesh
    @mashmesh 5 лет назад +1

    Thank you, so much! Awesome explanation!

  • @marouaneazza3519
    @marouaneazza3519 3 года назад +1

    merci

  • @scorpion7434
    @scorpion7434 4 года назад +1

    simply put, that was a great explanation :)

  • @piereligio_ds
    @piereligio_ds 3 года назад +1

    Thank you, this is a clear explanation. Well done :)

  • @adamq272
    @adamq272 3 года назад +1

    super

  • @helpfulsources2813
    @helpfulsources2813 4 года назад

    Thank you sir!!! Your explanations helped me to understand faster and easier!

  • @sagarekbote2679
    @sagarekbote2679 4 года назад +1

    just what i needed for my image processing coursework, thanks. And you kinda sound like nuclear Nadal from The dictator lol

  • @anoopgeorge4597
    @anoopgeorge4597 5 лет назад +1

    Very useful👍

  • @michaelch3722
    @michaelch3722 4 года назад +1

    Thank you sir!

  • @sarerusoldone
    @sarerusoldone 4 года назад +1

    That was really easy to understand, thank you!

  • @codyboudreau5544
    @codyboudreau5544 3 года назад

    Can OpenCV be used for machine vision? I’m asking specifically for Keyence c-plug-ins. Any insight would be great.

  • @TheFadime123
    @TheFadime123 5 лет назад +1

    very good

  • @ruotianzhang3139
    @ruotianzhang3139 4 года назад +1

    brilliant

  • @tubelight2026
    @tubelight2026 3 года назад +1

    perfect

  • @GamerAvanzedPc
    @GamerAvanzedPc 3 года назад

    How can I get the lines interceptions if I have the parametric form with rho (begins at the center of image) and theta? How to parametrize back if I have rho that is the distrance from the center of the image to the object?.

  • @rohitghughtyal1679
    @rohitghughtyal1679 4 года назад

    That was the best

  • @aeshahalasmari1968
    @aeshahalasmari1968 4 года назад

    Thank you for this useful tutorial

  • @loc_research
    @loc_research 4 года назад

    Hi Everyone: We have x.cos(theta) = p; y.sin(theta) = p so x.cos(theta) + ysin(theta) = 2d ???. How can we have that equation?

    • @marcoottina654
      @marcoottina654 4 года назад

      nope, those addends are equals to p/2.
      You can have that equation only if you assume 2d=p, so d = p/2.

  • @aqeelsajjad230
    @aqeelsajjad230 5 лет назад

    Hi!
    Have a good day.
    Can you share these slides please.

  • @etigorkhe41
    @etigorkhe41 Год назад

    damn, you are too cute to focus on hough transform

  • @kartikaykhattar96
    @kartikaykhattar96 5 лет назад +3

    Kya chutiya kata

  • @---_---_---_---_---_---
    @---_---_---_---_---_--- 2 года назад +1

    This guy is (leonard + Raj ) from big bang theory