Airflow Variables
HTML-код
- Опубликовано: 5 фев 2025
- In this video, we will learn about Airflow Variables. We will learn how to create Airflow Variable, how to retrieve its value, and more importantly when to use the Airflow Variables.
Connect with us on Whatsapp: + 91 8939694874
Website Blog: k2analytics.co...
Write to me at: ar.jakhotia@k2analytics.co.in
Data Engineering with Airflow Content:
1) Getting started with Airflow
2) Creating a Simple ETL DAG using DummyOperator
3) Creating a Simple ETL DAG using PythonOperator
4) Using XCOMs for Cross-Communication between Tasks
5) Passing DataFrame Object from Extract to Transform to Load Function
6) Connections and Hooks, airflow.hooks.postgres_hook, PostgresHook (pip install apache-airflow-providers-postgres)
7) SubDAGs, TaskGroups, Parallel Processing
8) Airflow Variables - Create, Retrieve and its usage
Airflow is a platform to programmatically author, schedule, and monitor workflows.
Use Airflow to author workflows as Directed Acyclic Graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.
Dynamic: Airflow pipelines are configured as code (Python), allowing for dynamic pipeline generation. This allows for writing code that instantiates pipelines dynamically.
Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built into the core of Airflow using the powerful Jinja templating engine.
Scalable: Airflow has a modular architecture and uses a message queue to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.
Challenges handled by Airflow:
Failures: retry if failure happens(how many times? how often?)
Monitoring: success or failure status, how long does the process runs?
Dependencies: Data dependencies: upstream data is missing
Execution dependencies: job 2 runs after job 1 is finished.
Scalability: There is no centralized scheduler between different cron machines
Deployment: deploy new changes constantly
Process historic data: backfill/rerun historic data
Connect with us on Whatsapp: + 91 8939694874
Website Blog: k2analytics.co...
Write to me at: ar.jakhotia@k2analytics.co.in
doing god's work
hi do you have any solution to pass date value from dag 1 to dag 2 to dag 3 and so on. Use case where the date value needs to be passed from the master dag to the downstream dags which are responsible for data extraction and load
It will have to be passed as text string
Date cannot ve directly passed in XCom as it is not serializable