Tuning Apache Spark for Large Scale Workloads - Sital Kedia & Gaoxiang Liu

Поделиться
HTML-код
  • Опубликовано: 16 янв 2025

Комментарии • 8

  • @JoHeN1990
    @JoHeN1990 4 года назад +9

    FYI, when you hear executor “um”, he meant executor OOM

  • @kushagraverma7855
    @kushagraverma7855 6 лет назад +3

    Slides: www.slideshare.net/databricks/tuning-apache-spark-for-largescale-workloads-gaoxiang-liu-and-sital-kedia
    Thanks guys, wonderfully helpful talk !!

  • @nelsonjma
    @nelsonjma 6 лет назад +1

    nice presentation mate. thanks for the information.

  • @oricoil
    @oricoil 6 лет назад +1

    Wow, awesome! Thank you!!

  • @VishwajeetPol
    @VishwajeetPol 6 лет назад +11

    Could have been better if he could have explained why they come to the conclusion on the numbers with before and after scenarios while setting the parameter values.
    And a demo would have been much better to see how the cluster works with before and after values for spark.executor.cores, spark.executor.memory, spark.driver.memory, spark.driver.cores and spark.executor.instances rather than dynamic allocation set to true with min and max values for executor instances.

  • @mnbvcxzzxcvbnm
    @mnbvcxzzxcvbnm 7 лет назад

    Thank you. It helps.

  • @sandycheeks6001
    @sandycheeks6001 3 года назад +5

    we really stalking him aren’t we…