Every subgroup of a cyclic group is cyclic.

Поделиться
HTML-код
  • Опубликовано: 12 ноя 2024

Комментарии • 40

  • @devikasahare2386
    @devikasahare2386 10 месяцев назад +2

    Thank you sir excellent 👍❤

  • @Abhaybhadouria1670
    @Abhaybhadouria1670 6 месяцев назад +16

    Found this after being disappointed by gazendra purohit sir ❤‍🩹

    • @rashidulislam4555
      @rashidulislam4555 11 часов назад

      Bhai tu 5mahine pehse se padai kar raha tha😮kal exm hein Aaj Sikh Raha hoon😭😭

  • @Radheradhe23468
    @Radheradhe23468 Год назад +8

    Sir book m lengthy tha boht apne easy way m smjha diya ♥️

  • @Subho_0513
    @Subho_0513 Год назад +3

    Dua koro sir
    Mera paper thik se jaye

  • @sandeepkaur2567
    @sandeepkaur2567 Месяц назад

    Thank you sir.😊 you explained very well .

  • @Yeahmansingh
    @Yeahmansingh Год назад +1

    thanks you made it very easy to understand

  • @eshaparvez4972
    @eshaparvez4972 Год назад +2

    Well explained Sir!!

  • @JasveerSingh-kh9qd
    @JasveerSingh-kh9qd Год назад +1

    Very hardworking sir 👨‍🏫

  • @Renu-us6fs
    @Renu-us6fs 2 месяца назад

    Sir pdf iss chapter k chaiye

  • @Rahul12345-p
    @Rahul12345-p 2 года назад +1

    Thank you dada,khub help holo

  • @jasrotia7350
    @jasrotia7350 2 года назад +1

    Thanku . Nd ur writing too good sir ...

  • @Renu-us6fs
    @Renu-us6fs 2 месяца назад

    Excellent sir

  • @SubrataDebnath-d1h
    @SubrataDebnath-d1h 10 дней назад

    Trivial and improper case kaha hai,, University ka koi acche teacher khata check karenge toh negative marks milenge, pure maths ka proof eise likhenge toh

  • @user-yr9dy7oj1p
    @user-yr9dy7oj1p Год назад

    Sir .. kindly guide me to answer the below question. Let G be a finite group. Then show that o(G) = o(Z(G)) + ∑[G:N(a)]>1[G : N[a]]

  • @sanamsanam7529
    @sanamsanam7529 11 месяцев назад

    Sir is theorem ka hum use kaha per karta hai

    • @MathsICU
      @MathsICU  10 месяцев назад

      For example Z5 is a cyclic group with respect to addition modulo 5
      Therefore every subgroup of Z5 is also cyclic
      You do not need to check their cyclicness.

  • @sachin1bollywood
    @sachin1bollywood Год назад +1

    New Subscriber Sir ☺️

    • @MathsICU
      @MathsICU  Год назад +1

      Thanks for subbing!

  • @Subho_0513
    @Subho_0513 Год назад +2

    Sir kal mera group theory ka exam he .

  • @Subho_0513
    @Subho_0513 Год назад

    Love From Purulia (west bengal)

    • @MathsICU
      @MathsICU  Год назад +2

      Best wishes 👍

    • @Subho_0513
      @Subho_0513 Год назад +1

      @@MathsICU thank you Sir

  • @mathematics9334
    @mathematics9334 2 года назад +5

    Sir ,
    b€H and a^k€H
    => b.( a^k)€H. (By closure property)
    How can we say that
    b.( a^k) ^(-q)€H.

    • @MathsICU
      @MathsICU  2 года назад

      We know that if a belongs to H (a€ H) then every integral power of a is also in H. (a^k€ H for every k in the set of integers) , H being a subgroup.
      Thus a^k € H then every integral power of a^k is also in H.
      (a^k)^(-q) € H

    • @mathematics9334
      @mathematics9334 2 года назад

      @@MathsICU Ok sir , now I got it.
      Thank you so much . Now it is clear.

  • @harshitapandey8342
    @harshitapandey8342 2 года назад +2

    Thank you

  • @rutujapande2020
    @rutujapande2020 2 года назад +2

    Thank you sir

  • @crazyaman6450
    @crazyaman6450 9 месяцев назад +1

    Itna lambaa

  • @awaisshoukat150
    @awaisshoukat150 3 года назад +1

    Good

  • @Anujkumar-we3ky
    @Anujkumar-we3ky 2 года назад +1

    good

  • @sm-qh2zp
    @sm-qh2zp 3 года назад +2

    H =({i^-³, i², i³,i⁴},×)
    Here in i²,i³,i⁴→2,3,4 are positive so take it as it is
    In i-³ → -3 is negative taki inverse of i-³ i.e. i³.
    Now the obtained element ao far is in some positive power of i and belongs to H (i.e. {i³,i²,i³,i⁴} but are not forming group

  • @birupakshchoudhury7057
    @birupakshchoudhury7057 6 месяцев назад +1

    lovely proof

  • @inzanevlog1816
    @inzanevlog1816 3 года назад

    your handpen 😧

  • @varunchoudhary8149
    @varunchoudhary8149 2 года назад

    .

  • @gourabbiswas2002
    @gourabbiswas2002 Год назад +1

    Thank you sir

  • @sudhasistla60
    @sudhasistla60 11 месяцев назад +1

    Thank you sir