Japanese Math Olympiad Question | You should know this Trick!!

Поделиться
HTML-код
  • Опубликовано: 28 ноя 2024

Комментарии • 24

  • @perekelund8088
    @perekelund8088 Месяц назад +1

    I enjoyed watching this. Calm and infirmatuve. 😊

  • @eleazargonzalezhernandez-qd9vf
    @eleazargonzalezhernandez-qd9vf День назад

    Thank you too

  • @Mohammedkaill
    @Mohammedkaill Месяц назад

    Continue sem desistir.

  • @sofianikolidou5640
    @sofianikolidou5640 Месяц назад

    ❤❤🎉

  • @Gnowop3
    @Gnowop3 Месяц назад +1

    This is the quickest way:
    1. The number must be ending with 5 as original number is ending with 25
    2. by inspection it is a 5 digit number begining with 3 and ending with 5. That is 3xyz5.
    3. The number barred the 25 (ie 11112222) must be a product of two consecutive numbers.
    4. 11112222=1111x10002 (easy to see from pattern) = 1111x3334x3=3333x3334
    5. The number = 33335 (rule of square of a number ending with 5)

    • @richardchiu9975
      @richardchiu9975 Месяц назад +1

      by inspection ,the square near 11 is 9 ,the last digit ends at 5 must be ,so the answer is 33335. Easy.

  • @paisley6660
    @paisley6660 Месяц назад +4

    Did you know from the beginning that it could be applied to the formula for squaring (a+b)?

  • @一-x7e
    @一-x7e Месяц назад +1

    1111222225 = 1111222200 + 25
    = 11110 * 100020 + 25
    = 11110 * (99990 + 30) + 25
    = a * (9a + 30) + 25
    = 9a^2 + 30a + 25
    = (3a + 5)^2
    = 33335^2

  • @BambangSurodjo
    @BambangSurodjo Месяц назад

    Menurut saya, untuk akar kwadrat itu lebih mudah dan lebih sederhana kalau DIHITUNG LANGSUNG saja dengan menerapkan bahwa (a + b)² = a² + 2ab + b² = a² + b(2a +b). Dengan mengambil setiap tahap 2 digit dihitung dari depan kebelakang. Dengan cara itu bahkan bisa untuk menghitung angka pecahan desimal.

  • @RainbowLegends2.0
    @RainbowLegends2.0 Месяц назад

    Actually there's a pattern with n number of 3s and 5
    Like 35² is
    One 1 two 2
    1225
    335²=
    Since there are two threes we have two ones and three twos
    112225
    And here we have four ones
    So four threes 33335
    Done!
    Like if useful

  • @moonlightsonata4866
    @moonlightsonata4866 Месяц назад

    let m=11111, 10^5=99999+1=9m+1
    1111222225=(m+1)*(9m+1)+2m+3=9m^2+12m+4=(3m+2)^2
    (1111222225)^(1/2)=3m+2=33333+2=33335

  • @omnipotent11
    @omnipotent11 Месяц назад +1

    I did that shit in my head, dunce.

  • @subbaraob8474
    @subbaraob8474 Месяц назад

    33335

  • @subbaraob8474
    @subbaraob8474 Месяц назад

    Not fit for compitative exams

  • @brodieanderson9598
    @brodieanderson9598 Месяц назад

    my calculator can do this in 3 seconds

    • @brodieanderson9598
      @brodieanderson9598 Месяц назад

      @@jetstream-h6p ever heard of efficency, kinda what evolution banks on

    • @brodieanderson9598
      @brodieanderson9598 Месяц назад

      @@jetstream-h6p so how about you keep your words to yourself and grow up

    • @chrisisbell3080
      @chrisisbell3080 Месяц назад +1

      This is a maths problem, not an arithmetic problem.

    • @jetstream-h6p
      @jetstream-h6p Месяц назад

      ⁠@@brodieanderson9598 Why don't you use chatGPT to comment on this page. It is not a sentence,but just an enume ration of words.

    • @xaviconde
      @xaviconde Месяц назад

      You should get a faster calculator.