An Interesting Exponential Equation

Поделиться
HTML-код
  • Опубликовано: 27 янв 2025

Комментарии •

  • @Blaqjaqshellaq
    @Blaqjaqshellaq Месяц назад +4

    If you include complex solutions, there's also x=[ln(phi)+i*(2*n+1)*pi]/[ln(2)-ln(3)], phi being the golden ratio and n being any integer.

    • @Wrest_1349
      @Wrest_1349 Месяц назад +1

      Please share your resolution

    • @Blaqjaqshellaq
      @Blaqjaqshellaq Месяц назад

      @@Wrest_1349 e^x can also equal -phi/[ln(2)-ln(3)], ln(-1)=i*(2*n+1) and ln(-phi)=ln(phi) + ln(-1).

  • @1234larry1
    @1234larry1 22 дня назад

    Seems like if you intended to check the solution into the equation, then using common log would be easier than the natural log, since you can change the base.

  • @Foamea45
    @Foamea45 Месяц назад

    You overcomplicated this problem.The first thing was right,you divide by 9^x but you write (4/9)^x as [(2/3)^x]^2 and substitute 2/3 as let's say a,but a>0 because an exponential is always positive.Then you have a quadratic in the variable you chose(for me it is a^2+a-1=0) and the solutions are(-1±5^0.5)/2 and since a^0,5 is approximately 2.23 and a is strictly positive we wil chose the +delta root. then we write a as (2/3)^x and x is log in base 2/3 of (-1+5^0,5)/2 ,the same answer,shorter path.

  • @zawatsky
    @zawatsky Месяц назад

    3^2x-2^2x-3^x*2^x=0. 3^x:=a, 2^x:=b, a²-2ab-b²=0. (a+b)²=2b²⇔a+b=√2b, но b=2^x⇒√2b=2^(x+½). 2^x+3^x=2^x*(1+(½)^x)=2^(x+lb(1+(½)^x)).⇔x+½=x+lb(1+(½)^x)⇔lb(1+(½)^x)=½⇔√2=1+(½)^x⇔(½)^x=√2-1=1/(2^x)⇔2^x=1/(√2-1)⇔2^(-x)=√2-1⇔-x=lb(√2-1)⇔x=-lb(√2-1). Жаль, что не просто √2, но наверняка можно упростить ещё...