Integral of sqrt(1+sin(x))

Поделиться
HTML-код
  • Опубликовано: 25 янв 2025

Комментарии • 7

  • @d-hat-vr2002
    @d-hat-vr2002 11 дней назад

    √(1+sin(x)) is a tricky function since it's not differentiable at 3π/2 + 2kπ for k∈ℤ
    Accordingly, even with the correct antiderivative, calculating a definite integral may need to be done piecewise.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 14 дней назад

    1+sinx=1+cos(x-π/2)=2cos²(x/2-π/4) [1+cosα=2cos²(α/2)]
    √(1+sinx)=√2cos(x/2-π/4)(if cos(x/2-π/4)≥0)
    So the integral of the function is equal to
    2√2sin(x/2-π/4)+C

  • @gelbkehlchen
    @gelbkehlchen 14 дней назад +1

    Solution:
    ∫√(1+sin(x))*dx =
    -------------
    Substitution:
    u = 1+sin(x) sin(x) = u-1 cos(x) = √(1-(u-1)²) = √(1-(u²-2u+1)) = √(2u-u²)
    du = cos(x)*dx dx = 1/cos(x)*du
    -------------
    = ∫√u*1/√(2u-u²)*du = ∫√[u/(2u-u²)]*du = ∫√[1/(2-u)]*du =
    -------------
    Substitution: z = 2-u dz = -du du = -dz
    -------------
    = -∫1/√z*dz = -∫z^(-1/2)*dz = -2*z^(1/2)+C = -2*√(2-u)+C
    = -2*√{2-[1+sin(x)]}+C = -2*√{2-1-sin(x)}+C = -2*√[1-sin(x)]+C
    Checking the result by deriving:
    {-2*√[1-sin(x)]+C}’ = 2*1/2*1/√[1-sin(x)]*cos(x)
    = cos(x)/√[1-sin(x)] = √[1-sin²(x)]/√[1-sin(x)]
    = √{[1-sin²(x)]/[1-sin(x)]} = √{[1+sin(x)]*[1-sin(x)]/[1-sin(x)]}
    = √(1+sin(x))

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 14 дней назад +1

    This result is only true in the interval sin(x/2)+cos(x/2)≥0 because √(a²)=a if a≥0.

    • @d-hat-vr2002
      @d-hat-vr2002 13 дней назад +1

      Yup, I spotted that at 2:55. For a channel that's supposed to teach correct practices in calculus, that's pretty bad.
      Did you see I credited your answer in one of my comments on a recent video?

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 13 дней назад +2

      Thank you. Unfortunately, there are errors that appear to be correct, but people do not notice them. For example, if someone writes √x²=x, it is considered correct, but if he writes √x²=-x, any person will see it as incorrect, knowing that the probability of being correct or incorrect in each of them is 50%.​@@d-hat-vr2002

    • @kevinmadden1645
      @kevinmadden1645 6 дней назад

      Exactly!