A Nice Olympiad Exponential Problem.

Поделиться
HTML-код
  • Опубликовано: 12 янв 2025

Комментарии • 8

  • @valentipav
    @valentipav Год назад +1

    3^(3x)-3^x=24
    3^(3x)-3^x=27-3
    3^(3x)-3^x=3^3-3^1
    3x-x=3-1
    2x=2
    x=1it will be easier, if something is not clear, or not correct, throw the question in the comments

  • @kaushikbasu9707
    @kaushikbasu9707 Год назад +1

    1

  • @musicsubicandcebu1774
    @musicsubicandcebu1774 Год назад

    Unity

  • @jonathanr520
    @jonathanr520 Год назад

    Easy
    3³x = (3^x)³
    (3^x)³ - 3^x = 24
    Let 3^x = d
    d³ - d = 24
    d³ - d - 24 = 0
    (d²+3d+8)(d-3)=0
    d=3
    3^x = 3¹
    X=1
    Or
    d²+3d+8=0
    [Using the quadratic formula]
    d. = 0.5 x [-3 + i(sq.rt 23)]
    3^x = 0.5[-3 + i(sq.rt 23)]
    x log 3 = log 0.5[-3 + i(sq.rt 23)]
    x = log 0.5[-3 + i(sq.rt 23)]/log 3
    &
    d.. = 0.5[-3 - i(sq.rt 23)]
    3^x = 0.5[-3 - i(sq.rt 23)]
    x log 3 = log 0.5[-3 - i(sq. rt 23)]
    x = log 0.5[-3 - i(sq.rt 23)]/log 3
    Answers:
    ▪︎ x=1
    ▪︎x=log 0.5[-3+i(sq.rt 23)]/log 3
    ▪︎x=log 0.5[-3-i(sq.rt 23)]/log 3

  • @jerrypaquette5470
    @jerrypaquette5470 Год назад +2

    Again a bunch of math for nothing. Use some deductive reasoning. 3^3X has to be greater than 24. Powers of 3: 1, 3, 9, 27, etc. 27 > 24. 27 =3^3. 27-24 =3 Therefore: X=1

    • @dolfindino7430
      @dolfindino7430 Год назад +1

      This is trial and error method
      It is not best solution and we use this only when proper method is not present🦎

    • @jerrypaquette5470
      @jerrypaquette5470 Год назад +1

      @@dolfindino7430 The best solution is the one that takes the least amount of work. Knowing the powers of numbers is not trial and error. Then again everyone is entitled to their opinion.