Proof of 1+1=3. Can you spot the mistake?

Поделиться
HTML-код
  • Опубликовано: 2 янв 2025

Комментарии • 41

  • @anantkumar8165
    @anantkumar8165 2 дня назад +7

    First comment please pin it

  • @JigneshGirase-v4k
    @JigneshGirase-v4k 2 дня назад +14

    2:21 - the mistake here is that you cannot just simply "cancel" out the square on both the sides as -
    (-2²) =2² but
    -2≠2
    This is where you just mistaken if two things have the equal square, you cannot just simply cancel it out as we have seen in the example above

  • @AdnanMroue-j9i
    @AdnanMroue-j9i 2 дня назад +20

    The mistake is he removed the exponents from (4-6)² and (8-6)²

  • @bossofdarkness0528
    @bossofdarkness0528 2 дня назад +6

    The mistake is when he removed the powers incorrectly because he did not put this kind of rule √x²=|x|
    'The square of that number squared is equal to the absolute value of that number" so the correct cancellation is
    (4-6)²=(8-6)²
    |4-6| = |8-6|
    |-2|=|2|
    2=2

  • @Aladin-tp1
    @Aladin-tp1 2 дня назад +8

    2:24 the absolute value of /4-6/ = /8-6/ here 's the mistake

    • @aldolopez8878
      @aldolopez8878 2 дня назад +2

      Yes, you cant just cancel the squares

  • @davidbrown8763
    @davidbrown8763 2 дня назад +2

    You cannot simply remove the squares on both sides without considering the fact that both are true for positive and negative values within their respective brackets.

  • @goodperson5962
    @goodperson5962 2 дня назад +3

    No we cant cancel square that way because by doing square root both sides we get modulus or absolute value function of x, i.e. by definition ✓x² = |x|

  • @CrazyAryan666
    @CrazyAryan666 2 дня назад +2

    no you actually take square root of (4-6)^2 = (8-6)^2
    but square root of something can't be negative so either put modulus or
    do like this (6-4)^2 = (8-6)^2

  • @learn_verses
    @learn_verses 2 дня назад +5

    The error occurs when you assume that the equation simplifies directly to
    4−6=8−6. In reality, the square roots of both sides represent absolute values, so you can't drop the absolute value symbols.
    The proper step should be:
    ∣4−6∣=∣8−6∣
    which simplifies to:
    -(4 - 6) = +(8 - 6) {Rule for > or < than 0}
    -(-2) = 2
    2 = 2

  • @michaelrentz7361
    @michaelrentz7361 2 дня назад

    When you take the square root on both sides, you need to include + or - on both sides (leaving us with + or - 2 = + or - 2, disallowing his arithmetic tangent. This is because sqrt(x^2) will always be equal to +x AND -x

  • @KunkumaTapelaRajasekhar
    @KunkumaTapelaRajasekhar День назад

    This man is Quite genius woth numbers , unorthodo methods

  • @micahholt9895
    @micahholt9895 2 дня назад

    Removing the squares from (4-6)²=(8-6)² just means -2=2.

  • @RishanAjayFJ
    @RishanAjayFJ 2 дня назад +2

    Mistake is in cancelling the square on both side because (4-6)²= (-2)²=4=(2²)=(8-6)²
    But if the square cancelled then (4-6)=(-2)≠(2)=(8-6)
    Thank me later😎😎😎😁😁
    Pls pin my comment so that it will be useful ...😎😎😎

  • @Macau_Ball
    @Macau_Ball 2 дня назад

    the wrong spot is that you cannot just square root both sides when (4-6)^2=(8-6)^2
    because you need to add plus or minus!

  • @Tamessah_560
    @Tamessah_560 2 дня назад

    in this solution, x got two values ,not one , x=4 in the left side and x = 8 in the right side ,where y =6 in both sides , so the two values of x made everything else built on it wrong mathematically without logic

  • @ConradoPeter-hl5ij
    @ConradoPeter-hl5ij 2 дня назад

    4-6= -2
    while,
    8-6= 2
    -2 ≠ 2 (that is the mistake!)
    in fact,
    (-2)²=(2)²
    but, -2≠2 ; thats it!
    Then, you cannot cancel the "squares" squares as you will...

  • @RishanAjayFJ
    @RishanAjayFJ 2 дня назад

    Happy new year....🎉🎉🎉🥳🥳🥳😎😎😎🍪🎂🎂🎂🧁🧁

  • @TheNumberblock3.275
    @TheNumberblock3.275 2 дня назад

    4=4
    52-48=100-96
    16+36-48=64+36-96
    4^2+6^2+2x4x6=8^2+6^2-2x8x6
    (4-6)^2=(8-6)^2
    (-2)^2=(2)^2 *[**2:21** is the mistake]*
    4=4
    4/4=4/4
    1=1
    1+1=
    2

  • @harrymatabal8448
    @harrymatabal8448 2 дня назад

    Excellent comments❤

  • @JahinTausifChowdhury
    @JahinTausifChowdhury 2 дня назад

    When You Canceled The squares, There must be +-(4-6)=+-(8-6)

  • @HylodeN
    @HylodeN 2 дня назад

    You can't cancel the square because (4-6)²≠(4-6)

  • @jasondudeman
    @jasondudeman 2 дня назад

    I would first check if it was in a different base vs base 10

  • @jasondudeman
    @jasondudeman 2 дня назад

    At 2:40 you Definitely made a mistake

  • @Tiaxoztiao
    @Tiaxoztiao 2 дня назад +1

    0:28 it was true cause me, you and our children😋

  • @KronikTarih1
    @KronikTarih1 2 дня назад +1

    Okay. Then
    İf x=y
    x²=xy
    x²-y²=xy-y²
    (In here a²-b² = (a+b) × (a-b) and ax-bx = x(a-b))
    (x+y)(x-y) = y(x-y)
    And if we divide this 2 equations with x-y
    x+y=y. Remember at the first x=y and now x+y=y. İf we say x=1, 1+1 =1. 2=1. WOW

    • @ngweilun5053
      @ngweilun5053 2 дня назад

      😅

    • @Study_with_svm
      @Study_with_svm 2 дня назад

      No it is x=0

    • @Study_with_svm
      @Study_with_svm 2 дня назад

      How you can assume a value until you didn't solve whole equation x+y = y =⟩ x=0 , so how you can take x=1

  • @gokselturken8071
    @gokselturken8071 2 дня назад

    -2=2 hmm so accurate

  • @ZDTF
    @ZDTF 2 дня назад +1

    2:40
    OBJECTIOM
    YOU ARE CHEAT

  • @Surya-to5wk
    @Surya-to5wk 2 дня назад

    No haha 😂😂

  • @heenakhandelwal8608
    @heenakhandelwal8608 2 дня назад

    First comment

  • @herobrinewhosthat
    @herobrinewhosthat 2 дня назад +1

    The critical error in this proof occurs in Dividing by (𝑎2−𝑎𝑏)(a 2 −ab) is invalid if 𝑎2−𝑎𝑏=0a 2 −ab=0, which is true since 𝑎=𝑏a=b. This makes the denominator undefined, rendering the entire proof incorrect.

    • @carpal4489
      @carpal4489 17 часов назад

      what? this never happened, you probably didn't even watch the video