Hazard Rate and related concepts in Reliability Engineering

Поделиться
HTML-код
  • Опубликовано: 29 ноя 2024

Комментарии • 45

  • @parthjivani8488
    @parthjivani8488 Год назад +1

    Excellent explanation Sir! This is really helpful to understand the concept, thank you!

    • @uhemant1
      @uhemant1 Год назад

      Welcome! Appreciate your feedback!

  • @dartagnandebatz3304
    @dartagnandebatz3304 4 года назад +2

    Thank you so much for this clear in plain english explanation, it is simple , concise and direct, just one´s need to set hands on job!, congratulations and greetings from Mexico!

  • @nintishia
    @nintishia Год назад +1

    Thank you so much for this lucid exposition of the topic.

  • @sridharakiri840
    @sridharakiri840 2 года назад +2

    Nice Explanation, Sir Thank You

    • @uhemant1
      @uhemant1 2 года назад

      My pleasure! Glad you liked it!

  • @prosimulate
    @prosimulate 4 года назад +2

    This was fantastic. Really helpful!

  • @jenniferuller9852
    @jenniferuller9852 3 года назад +2

    Very well explained, thank you so much!

  • @modestliving9662
    @modestliving9662 4 года назад

    Great job done Sir. It was very useful for me. Thanks

  • @AC-ll5ky
    @AC-ll5ky 4 года назад +1

    Thx for excellent presentation!

  • @TheSanthoshteja
    @TheSanthoshteja 4 года назад

    Hi Hemanth sir, this Santhosh.Can you remember me, i am the person who messaged you via LinkedIn earlier.Today luckily i studied about hazard function.Even you thought the same with more clear understanding.

  • @MatheusSilva-dragon
    @MatheusSilva-dragon 3 года назад +1

    THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU THANK YOU!

  • @hodongjunior2826
    @hodongjunior2826 3 года назад +1

    I love your videos!

  • @anveshagarwal6958
    @anveshagarwal6958 3 года назад +2

    Hello sir,
    Nicely presented.
    As i have never dealt with weibull distribution, I want to know that how shape parameter and scale parameter are determined?

    • @instituteofqualityandrelia7902
      @instituteofqualityandrelia7902  3 года назад +1

      Thank you. Please watch our other videos on Weibull distribution. Link is here to one video:
      ruclips.net/video/dsuLVS2yQ4U/видео.html

  • @joseavalos9988
    @joseavalos9988 Год назад +1

    What about the ROCOF? how does it compare to the hazard rate?

    • @uhemant1
      @uhemant1 Год назад

      Thanks! Please watch my videos on HPP and NHPP, AMSAA model for this.

  • @kdpr007
    @kdpr007 4 года назад +1

    Nice video. Thnk you. Can you guide us how R(400)=095 has been arrived? I am struggling. kindly help

    • @instituteofqualityandrelia7902
      @instituteofqualityandrelia7902  4 года назад +2

      R(400) is actually 0.94 (Time 6:20 in video). As you note, 30 bulbs out of 500 have failed by 400 hours . This means 470 survived. Thus reliability is 470/500=0.94. Hope this is clear.

  • @prakashp6168
    @prakashp6168 4 года назад

    Hi Hemant Sir, This is prakash Pawar from Ashok Leyland, Sir I have a data for last one year which shows the scoring defects in panel at certain cumulative number. Weather weibull analysis will help me to predict the exact cycle of defect (scoring)occurenece, which will help mw to take action before it reoccure next time.

    • @uhemant1
      @uhemant1 4 года назад

      I need to understand more before I make my recommendation.

    • @prakashp6168
      @prakashp6168 4 года назад

      Sir, This id the data of failure of perticular tool for the defect Scoring
      Scoring data collected for one year with no of strokes produced cumulative.
      Also frequency of failure on that day also captured.
      How i can predict that whwn next failure is going to happen by using weig bull.
      Data sheet for your reference sent on e mail

  • @BenByboth
    @BenByboth 2 года назад

    @1:55 mark, why is the h(t) not over the five months, as opposed to the 2 shown? 6/(5*1196)?

    • @instituteofqualityandrelia7902
      @instituteofqualityandrelia7902  Год назад

      Hi! Thanks for your keen interest. The hazard rate for the next TWO months is to be calculated. h(t) is per unit time per unit. So the demoninator will be (2x1196) and not (5x1196). Hope this is clear.

  • @mohamadfaizal6332
    @mohamadfaizal6332 3 года назад +1

    Instantaneous Hazard rate at 450 hrs is only 0.00017. In your question you have mentioned hazard rate at 400 hrs 0.00017 which is wrong..

  • @ashishshrivastava8864
    @ashishshrivastava8864 Год назад

    3:03 we have two hazard rates at 400, 0.00015 & 0.00017? Any logic to choose one of the two?

    • @instituteofqualityandrelia7902
      @instituteofqualityandrelia7902  Год назад

      There is only one hazard rate. 4/(50x470)=0.00017. Please do not divide by 500 as at 400, only 470 bulbs have survived.

  • @hima_chatna4508
    @hima_chatna4508 4 года назад

    Add more videos sirrr... related to reliability...if I have mttb in hours obtained from datasheet then how to calculate reliability using mttb

  • @TheSanthoshteja
    @TheSanthoshteja 4 года назад

    Sir actually in weibull plotting we will take characteristic life at 63.2% , why do we have to consider at that point.I know if lambda =t then e power -1 gives you 0.362 and 1- of this is 0.632 but is there anything to consider at 63.2%>>>>?

    • @instituteofqualityandrelia7902
      @instituteofqualityandrelia7902  4 года назад

      Good question. At chracteristic life, reliability is 0.362 as mentioned by you. This is purely a mathematical number and does not signify anything else in my opinion.

  • @prakashp6168
    @prakashp6168 4 года назад

    weather this can be used to predict the failure based on past failure data - as a predictive maintenace of press shop dies.(tools)

    • @uhemant1
      @uhemant1 4 года назад

      You need to use Life Data Analysis. Hazard rate is a foundation concept.