TREE vs Graham's Number - Numberphile

Поделиться
HTML-код
  • Опубликовано: 21 ноя 2024
  • НаукаНаука

Комментарии •

  • @numberphile
    @numberphile  5 лет назад +929

    Supporting #TeamTrees on a quest to plant 20 million trees - www.teamtrees.org/
    Original brown papers from this video available to support the campaign - bit.ly/brownpapers

    • @yubullyme2884
      @yubullyme2884 5 лет назад +37

      Numberphile you should do tree 20 million

    • @whatisthis2809
      @whatisthis2809 5 лет назад +25

      Tree(20,000,000)

    • @altfist
      @altfist 5 лет назад +10

      Oh can you do a video on SCG(13)?

    • @whatisthis2809
      @whatisthis2809 5 лет назад +15

      *_WHY IS THERE INFINITE FINITE NUMBERS?!_*

    • @whatisthis2809
      @whatisthis2809 5 лет назад +15

      More googology please :3

  • @sudoku0095
    @sudoku0095 3 года назад +2443

    A couple years ago, I planted a tree
    After one year, it was 1m tall
    After two years, it was 3m tall
    How tall will it grow in year 3?

    • @scoutgaming737
      @scoutgaming737 3 года назад +459

      We are gonna die

    • @petergriffinhentai4724
      @petergriffinhentai4724 3 года назад +424

      Sit on top if you want to evade tax forever

    • @it_genfailure
      @it_genfailure 3 года назад +295

      * tree pierces the outer shell of the universe *

    • @OllyGucci
      @OllyGucci 3 года назад +35

      @@petergriffinhentai4724 lol

    • @super-awesome-funplanet3704
      @super-awesome-funplanet3704 3 года назад +42

      Can you please show me a spread sheet with the heights that the tree has had Not just exactly 1 year after you planted it and exactly 2 years after you planted it but also provide values between 0 years after you planted it and 1 year after you planted it and values between 1 year after you planted it and 2 years after you planted and all the way to now. Ps it should not be too hard to figure out the heights for whole numbers like 0,1,2,3,4... even if some of them you have to use a weird mathematical function to show the answer (Like even weirder than power towers.).

  • @bigpopakap
    @bigpopakap 5 лет назад +799

    5:16 "You're giving the TREE more juice". This was the funniest, most succinct way to describe the same intuition I had!

    • @dialecticalmonist3405
      @dialecticalmonist3405 3 года назад +24

      I'm not sure what the term is for "rate expansion".
      For now "rate expansion" = juice.

    • @flagmuffin1221
      @flagmuffin1221 3 года назад +1

      Juicing the equation

    • @adarshmohapatra5058
      @adarshmohapatra5058 2 года назад +1

      I thought of it like this. The tree function gives much larger values than the g function. So at the enormous scales that we're talking about, all that matters is what is inside the tree function. So tree(g64) is better than g(tree(64)) because you're giving a bigger number to tree. It doesn't even matter what g is doing at this point.

    • @bigpopakap
      @bigpopakap 2 года назад +1

      ...in other words, giving the juice to TREE, not g 😉. Give that tree more juice!

    • @namelastname4077
      @namelastname4077 2 года назад

      some would say he gave it more sauce, not juice

  • @GeoffBeggs
    @GeoffBeggs Год назад +701

    So sure, Tree(Graham’s Number) is big. But I have just been exploring the harmonic series (1 + 1/2 + 1/3 + 1/4 + 1/5 …). It is divergent. It takes around 10^43 terms just to get it to sum to a hundred, and it gets way way slower after that.
    So my number (‘Geoff’s Number’ if no one has claimed this before) is:
    “The number of terms required for the harmonic series to sum to Tree (Graham’s Number)”.

    • @prod_EYES
      @prod_EYES Год назад +62

      Pin this comment

    • @GeoffBeggs
      @GeoffBeggs Год назад +95

      @Joji Joestar I’ll have to take your word on that. Sounds big.

    • @rafiihsanalfathin9479
      @rafiihsanalfathin9479 Год назад +35

      @@GeoffBeggswell 1+1/2+1/3+...+1/n approximately ln(n)+euler m constant and the approximation gets better and better the larger the n. Because tree(g(64)) is so massive, e^(tree(g(64)-euler m constant) number of term is super sccurate approximation

    • @StoicTheGeek
      @StoicTheGeek Год назад +35

      @@GeoffBeggs yes, it is the same size as TREE(Graham’s number). When you are dealing with numbers this big, raising them to a power doesn’t make much difference.

    • @craigdavies2598
      @craigdavies2598 Год назад +2

      My number is:D(D3)3

  • @EGarrett01
    @EGarrett01 5 лет назад +480

    Now this video lives up to the name Numberphile.

    • @MrBlaDiBla68
      @MrBlaDiBla68 3 года назад

      Indeed, in math, chess, soccer and boxing, *drive* is important to "win" ;-)

    • @TheFilipFonky
      @TheFilipFonky 4 месяца назад

      @@MrBlaDiBla68 wot

  • @sean..L
    @sean..L 4 года назад +547

    "But I don't need to stop!" He's gone mad with power.

    • @anhbui-bc4ew
      @anhbui-bc4ew 3 года назад +1

      don;'t

    • @oz_jones
      @oz_jones 3 года назад +5

      *math

    • @hardnrg8000
      @hardnrg8000 3 года назад +1

      @Nicholas Natale yes.

    • @finnnaginnn
      @finnnaginnn Год назад +3

      I've gone madder.

    • @PC_Simo
      @PC_Simo Год назад +6

      Yes. Next, he’ll go mad with tetration. 😅😮😨😱🤯

  • @johnathanmonsen6567
    @johnathanmonsen6567 2 года назад +93

    This is absolutely the best explanation I've seen of just how much more massive TREE(3) is than g64.

    • @AymanTravelTransport
      @AymanTravelTransport Год назад +17

      If you look at it through the levels of googology: level 0 is all the single digit and small numbers tending to zero; then level 1 goes from double-digits to a million; then level 2 goes beyond this all the way to a million digits (yes, googol and virtually every number we can practically deal with in our observable universe doesn't even get past level 2); level 3 starts entering the realms of tetration with googolplex and the likes; level 4 goes well beyond googolplexian and so on. You can see how going up just one level in the realms of googology gets to even greater magnitudes much further away than the levels before it. Well, G1 sits around level 6 or 7 and then G64 is much further at level 12, with fw(n) starting here or the level before it (11) let that sink in. So you can see that the difference between 12 levels is the difference between mere counting and shooting past G64 by iterating the number of arrows. Now you run through all the ordinals from omega through epsilon, zeta, eta until you reach the insane gamma-zero; the latter is all the way up to level 100 in the fast-growing hierarchy, meaning that counting to even G(G(...G(64))) [G64 iterations] would be much faster than using the G(n) function (or even f-epsilon0 for that matter) to reach the monsters produced by fgamma-zero(n). However, even then TREE(3) would laugh at this, as it's all the way up in level 120. That's right, an entire 20 levels ahead of fgamma-zero(n), which is insanely further apart than 0-1 and G64 which is merely 12 levels. This means even using fgamma-zero(n) to reach TREE(3) would be much slower (which is still an understatement) than merely counting to G64, even if you were to count in base 1/G64.

    • @lookoutforchris
      @lookoutforchris 4 месяца назад +1

      I’ve got a large number I’m working on called ‘yo mama’

  • @salientsoul
    @salientsoul 5 лет назад +867

    19:15 - “if omega’s so great, why isn’t there an omega 2, huh?”
    19:20 - “oh ok I’ll shut up now”

  • @krozjr5009
    @krozjr5009 5 лет назад +2600

    Remember this meme?
    Marvel: Infinity War is the most ambitious crossover in history.
    Numberphile: TREE(Graham’s Number).

    • @MuzikBike
      @MuzikBike 5 лет назад +70

      Nah, let's do TREE(TREE(TREE(...TREE(g64)...))), where TREE is repeated G64 times.

    • @sinom
      @sinom 5 лет назад +31

      @@MuzikBike why stop there? why not repeat it TREE(G64) times? Or TREE(TREE(G64)) times?

    • @Theboss24611
      @Theboss24611 5 лет назад +15

      Or just the crossover of Numberphile and Mr Beast.

    • @simohayha6031
      @simohayha6031 5 лет назад +6

      @@sinom how bout ∞?

    • @ganaraminukshuk0
      @ganaraminukshuk0 5 лет назад +22

      What if we planted TREE(g64) trees?

  • @Darkness2179
    @Darkness2179 4 года назад +211

    Man I love this guy's charisma, he's so genuine.

    • @notmarr2000
      @notmarr2000 2 года назад +6

      His book is amazing as well: "Fantastic numbers and where to find them."

    • @fernandourquiza4593
      @fernandourquiza4593 2 года назад +6

      @@notmarr2000 can you like this comment just to remember myself to buy it?

    • @notmarr2000
      @notmarr2000 2 года назад +5

      @@fernandourquiza4593 the book is utterly mind blowing. I am half through (last chapter "Graham's Number, current chapter TREE (3)). The book is more than about math - he gets into a lot of physics, the concept of how big would the universe have to be before you would find an exact double of yourself, is the universe that big? Ect.

    • @SyenPie
      @SyenPie Год назад

      @@fernandourquiza4593 4th like after 8 months just checking in if you bought it 😄

  • @Alex_Deam
    @Alex_Deam 5 лет назад +6109

    "TREE vs Graham's Number" is basically clickbait for mathematicians

    • @Adraria8
      @Adraria8 5 лет назад +189

      I mean yeah it’s clickbate but in fairness they weren’t lying

    • @Danilego
      @Danilego 5 лет назад +127

      TREE won by a landslide... A landslide of orders of infinities!

    • @undercoverdetective463
      @undercoverdetective463 5 лет назад +19

      no coz if u know this its obvious whats bigger and u gain nothing new from the vid. but people who didnt knew can gain something

    • @bsinita_wokeone
      @bsinita_wokeone 5 лет назад +32

      I'm not mathematically smart.......but i due enjoy learning about big numbers and I mean BIG numbers like the ones larger than the ones in this video. Like Fish number, etc

    • @edghe119
      @edghe119 5 лет назад +16

      The Gogeta vs Broly of the math world

  • @Sakkura1
    @Sakkura1 5 лет назад +945

    Aleph-null bottles of beer on the wall, aleph-null bottles of beer, take one down, pass it around, aleph-null bottles of beer on the wall.

    • @ThorHC11
      @ThorHC11 5 лет назад +89

      Best part is that "aleph-null" has the same number of syllables as "ninety-nine." So the rhythm keeps up!

    • @naresu
      @naresu 5 лет назад +22

      that's a lovely one

    • @InsertPi
      @InsertPi 5 лет назад +22

      unfortunately subtraction isn't defined for infinite cardinals

    • @nate_storm
      @nate_storm 5 лет назад +23

      Infinity (aleph null) minus one is infinity

    • @pst9056
      @pst9056 5 лет назад +18

      Klein bottles?

  • @iau
    @iau 4 года назад +126

    It's crazy that such a simple "game" to explain, like TREE(n), which you may easily explain to even a first grader, is so insanely more powerful than even Γ₀, which requires pretty advanced mathematics to even begin conceptualizing.
    Mathematics is beautiful!

    • @R3cce
      @R3cce Год назад +11

      TREE(n) lies between the SVO and LVO in fast growing hierarchy. The SVO is lower bound and LVO the upper bound. It is much closer to the SVO but slightly faster than that

    • @R3cce
      @R3cce Год назад +13

      The SVO and LVO is just ridiculous just to let you know. If you want i can link a video to explain these ordinals. Then you will understand why Tony said in the video that anything beyond gamma gets messy😂😂

    • @bdjfw2681
      @bdjfw2681 Год назад +3

      @@R3cce sound fun , link pls.

    • @AymanTravelTransport
      @AymanTravelTransport Год назад +12

      @@R3cce If you look at it through the levels of googology: level 0 is all the single digit and small numbers tending to zero; then level 1 goes from double-digits to a million; then level 2 goes beyond this all the way to a million digits (yes, googol and virtually every number we can practically deal with in our observable universe doesn't even get past level 2); level 3 starts entering the realms of tetration with googolplex and the likes; level 4 goes well beyond googolplexian and so on. You can see how going up just one level in the realms of googology gets to even greater magnitudes much further away than the levels before it. Well, G1 sits around level 6 or 7 and then G64 is much further at level 12, with fw(n) starting here or the level before it (11) let that sink in. So you can see that the difference between 12 levels is the difference between mere counting and shooting past G64 by iterating the number of arrows. Now you run through all the ordinals from omega through epsilon, zeta, eta until you reach the insane gamma-zero; the latter is all the way up to level 100 in the fast-growing hierarchy, meaning that counting to even G(G(...G(64))) [G64 iterations] would be much faster than using the G(n) function (or even f-epsilon0 for that matter) to reach the monsters produced by fgamma-zero(n). However, even then TREE(3) would laugh at this, as it's all the way up in level 120. That's right, an entire 20 levels ahead of fgamma-zero(n), which is insanely further apart than 0-1 and G64 which is merely 12 levels. This means even using fgamma-zero(n) to reach TREE(3) would be much slower (which is still an understatement) than merely counting to G64, even if you were to count in base 1/G64.

    • @R3cce
      @R3cce Год назад +8

      @@AymanTravelTransport
      According to Googology, the TREE sequence has the ordinal of (SVO times Omega) in the fast growing hierarchy

  • @PTNLemay
    @PTNLemay 5 лет назад +527

    Brady's "more juice power" proof. I like it.

    • @DFPercush
      @DFPercush 5 лет назад +26

      Graham-ade, it's got what TREE craves!

    • @bigpopakap
      @bigpopakap 4 года назад +11

      it's rigorous enough for me!

    • @PC_Simo
      @PC_Simo Год назад +2

      So do I 🧃.
      P.S. You’re welcome for your 512th like. 👍🏻

    • @PC_Simo
      @PC_Simo Год назад +1

      @@DFPercush Exactly 👌🏻🎯😅.

    • @PC_Simo
      @PC_Simo Год назад +1

      @@bigpopakap Same here 😌.

  • @Lucasinbrawl
    @Lucasinbrawl 5 лет назад +741

    "Anything beyond gamma zero gets really messy." Yes, all was beautifully in order before then ;)

    • @TheAlps36
      @TheAlps36 4 года назад +38

      Ironic that they're called "ordinals"

    • @chaohongyang
      @chaohongyang 3 года назад +21

      I can confirm this, many post gamma zero notations are off the scale complex for new people to understand

    • @The360MlgNoscoper
      @The360MlgNoscoper 3 года назад +4

      Gamma gamma zero (;

    • @j.hawkins8779
      @j.hawkins8779 3 года назад +3

      @@chaohongyang actually, its ridiculously easy to go past it.

    • @scathiebaby
      @scathiebaby 3 года назад +17

      @@j.hawkins8779 Add 1

  • @hylen26
    @hylen26 8 месяцев назад +7

    "This next guy, I'm not going to write it out, because it has 121 million digits."
    This has to be in the top ten Numberphile videos of all time. Maybe top three even?

  • @TheTwick
    @TheTwick 5 лет назад +979

    I remember, on the schoolyard, when the biggest number was “a BAZILLION”🤯

    • @boudicawasnotreallyallthat1020
      @boudicawasnotreallyallthat1020 5 лет назад +111

      Bazillion + 1.

    • @xexpo
      @xexpo 5 лет назад +66

      @@boudicawasnotreallyallthat1020 I don't mean to obliterate you.. but I raise you 2 bazillion.

    • @teriww
      @teriww 5 лет назад +49

      ....2 bazillion plus infinity🙀🙀🙀🙀

    • @user-fk6cb9en8v
      @user-fk6cb9en8v 5 лет назад +20

      @@xexpo 2 bazillion-fantastillion

    • @wallonice
      @wallonice 5 лет назад +15

      I remember it being "uncountable"

  • @MagruderSpoots
    @MagruderSpoots 5 лет назад +2981

    If each of my brain cells was a brain, lets just call that an omega brain, I still wouldn't understand this.

    • @BaldAndroid
      @BaldAndroid 5 лет назад +183

      This makes my brain feel like it is a brain cell.

    • @jonadabtheunsightly
      @jonadabtheunsightly 5 лет назад +147

      Yeah, but what if each of your brain cells contained as many brains, as your brain has brain cells? No, wait, what if each of your brain cells contained as many brains, as the number of possible permutations on the set of all brain cells in all of the brains in all universes real and imaginary? No, wait, what if all brains were like that, and then what if each of your brain cells could produce that many new brains per nanosecond, for each possible permutation on the set of all of the brain cells in all of those brains?

    • @dahemac
      @dahemac 5 лет назад +2

      😂

    • @U014B
      @U014B 5 лет назад +69

      If I had a TREE(g(Γ₀!))-brain for every 1/(TREE(g(Γ₀!))) Planck Volume within the known universe (let's just call that a Ж-brain), and then had Ж Ж-brains for every one of those,
      I would probably die.

    • @timothymonk1356
      @timothymonk1356 5 лет назад +35

      @@jonadabtheunsightly Even if each of those brains had the combined capacity of the greatest scientists in the history of humanity, you still wouldn't come close to comprehending these numbers

  • @felooosailing957
    @felooosailing957 3 года назад +19

    Fascinating that g and TREE are so fast growing that you need transfinite ordinals to put them in a hierarchy. This is probably the best way to convey their power.

  • @kingbranden1369
    @kingbranden1369 5 лет назад +503

    They pulled out ordinal collapsing functions on us. They really brought the big guns for this fundraiser.

  • @CylonDorado
    @CylonDorado 5 лет назад +1097

    Last time on Number Ball Z!
    Graham’s Number: “It’s no use, he’s too strong!”
    TREE (3) : “We have one option. We have to combine!”

  • @RedDesertRoz
    @RedDesertRoz 5 лет назад +74

    I'm at just over 14 minutes and am going to have to rest my mind and finish this tomorrow. Have just watched the 2 videos on tree(3) beforehand. This feels like staring into the abyss and it's rather terrifying, and as well, my mind feels like it's melting down from struggling to comprehend such enormity. Who knew that maths could get kind of terrifying?!

  • @GermaphobeMusic
    @GermaphobeMusic 5 лет назад +800

    _looking at all the youtubers making tree videos_
    "Oh yeah. It's all coming together."

    • @jinjunliu2401
      @jinjunliu2401 5 лет назад +33

      although some trees were probably harmed due to the amount of brown paper used here

    • @Snort70
      @Snort70 5 лет назад +1

      Hey it’s me you stole my comment cool idc

    • @Snort70
      @Snort70 5 лет назад +1

      Germaphobe I don’t care tho

    • @carbrickscity
      @carbrickscity 5 лет назад +2

      Nothing beats this one since pretty sure none of the others could come up with something like TREE(3)

  • @emoglobin2195
    @emoglobin2195 5 лет назад +2693

    Is it me, or does 20 million suddenly sound like a pathetically small number

    • @sadhlife
      @sadhlife 5 лет назад +289

      time to plant TREE(3) trees

    • @anixias
      @anixias 5 лет назад +97

      Time to plant TREE(TREE(TREE(....tree(64) times...))) trees

    • @yvesnyfelerph.d.8297
      @yvesnyfelerph.d.8297 5 лет назад +86

      120million digits sounds like nothing at all, given what they are looking at

    • @DirtyRobot
      @DirtyRobot 5 лет назад +32

      That's basically a day's worth of disposable chopsticks in China.
      Thanks internet, Now Chinese can enjoy eating for an extra day.

    • @schenkov
      @schenkov 5 лет назад +15

      Actually first thing I thought when I heard about that project was:"20 million threes are not so much at all"

  • @grugruu
    @grugruu 4 года назад +38

    This is the most intense AND my favorite part of this whole channel.

  • @juliankneaz6893
    @juliankneaz6893 5 лет назад +297

    The mathematicians went out of control, somebody please stop them

  • @joshuamiller5599
    @joshuamiller5599 5 лет назад +525

    “Well, the problem is that you’re just dealing with finites.”
    This problem is indeed found in so many situations.

    • @etfo714
      @etfo714 4 года назад +30

      Newton/Leibniz be like this when inventing calculus.

    • @antonhelsgaun
      @antonhelsgaun 4 года назад +29

      A problem when looking at my account balance

    • @dAvrilthebear
      @dAvrilthebear 2 года назад +5

      I encounter this problrem when paying for my gaughter's tutors)

    • @douche8980
      @douche8980 2 года назад

      Sounds like a racist statement :(

    • @miaomiaochan
      @miaomiaochan 2 года назад

      The only finite thing that's a problem is the finite nature of human intelligence.

  • @Uranyus36
    @Uranyus36 4 года назад +77

    It's amazing that even without the ordinal Mathematics, we can still tell that TREE function grows (way) more quickly than Graham's function. TREE(n) literally goes from 1 to 3 to something that is way way way way way bigger than Graham's number, while G(n) needs 64 layers to go from 3^^^^3 to Graham's number. It's absolutely safe to say that at least the numbers G(1) to G(64) are all within the gap between 3 and TREE(3). The jumping between G(n) is essentially stationary compared to that between TREE(n).

    • @PC_Simo
      @PC_Simo 2 года назад

      Exactly 👌🏻.

    • @caringheart34
      @caringheart34 Год назад +3

      G(0) is also 4 so basically the entire graham sequence

    • @PC_Simo
      @PC_Simo Год назад +1

      @@caringheart34 I thought the same thing 🎯.

    • @R3cce
      @R3cce Год назад +1

      @@PC_SimoTREE(n) grows at a rate between the SVO and LVO in fast growing hierarchy.
      These ordinals are beyond gamma. I can link a video to explain these ordinals if you want. You will then understand why Tony said in this video that anything beyond gamma gets messy😂

    • @Empiro3
      @Empiro3 Год назад +6

      Things can start slowly then get really big later though. Tree is still a computable function. The Busy Beaver function has pretty reasonable values for small values, but it grows much faster than any computable function.

  • @thurston2235
    @thurston2235 5 лет назад +165

    The paper change is the real reason we watch this channel.

    • @BobStein
      @BobStein 5 лет назад +8

      Yep. That joke's got layers, man.

    • @AndrewTyberg
      @AndrewTyberg 5 лет назад +2

      Ummm... Not true....

    • @pleasuretokill
      @pleasuretokill 4 года назад +5

      It's the one thing here I can comprehend

    • @Ishub
      @Ishub 2 года назад +1

      @@pleasuretokill same

    • @waldothewalrus294
      @waldothewalrus294 Год назад +1

      The jingle on it keeps me living

  • @dvkprod
    @dvkprod 5 лет назад +532

    Recommended reading for the course - Vsauce's How to count past infinity.

    • @NoriMori1992
      @NoriMori1992 5 лет назад +88

      Dyani K. Seriously. That video's the only reason I had the slightest understanding of the omega stuff.

    • @zmaj12321
      @zmaj12321 5 лет назад +38

      If I haven't already seen that video I would have no clue what I was watching.

    • @gdash6925
      @gdash6925 4 года назад +10

      Yea that inspired me to watch this numberphile video.

    • @billvolk4236
      @billvolk4236 4 года назад +10

      Vsauce, where we give disingenuous answers to clickbaity loaded questions without ever explaining what's fundamentally wrong with them.

    • @dvkprod
      @dvkprod 4 года назад +24

      @@billvolk4236 dude, what is your problem

  • @denverbax6329
    @denverbax6329 9 месяцев назад +8

    22:51 Yoooo that is actually scary. I knew TREE was big, but I did not expect that.

    • @R3cce
      @R3cce 9 месяцев назад +4

      TREE(n) is believed to grow at least as fast as the Small Veblen Ordinal or SVO for short. SVO is beyond Gamma in strength

    • @jamx02
      @jamx02 6 дней назад

      @R3cce It more than likely isn’t anywhere close. SVO just covers a lot of area within ordinal collapsing functions so it more than likely grows faster than TREE(n), it’s just nobody really knows so they slap it on SVO because it’s the best estimate. The only thing we do know is it is between the Ackermann ordinal (Fefermann-Schutte fixed point) and the small Veblen ordinal.

  • @BedrockBlocker
    @BedrockBlocker 5 лет назад +88

    The TREE function impresses me everytime. It's so simple yet it blows everything away.

    • @knightoflambda
      @knightoflambda 5 лет назад +13

      Just wait, one day they'll finally explain the Busy Beaver function BB(n), which grows so fast there literally cannot exist a function that can compute any of its digits. It's insane just how fast it grows. I heard that even getting a lower bound on BB(20000) is impossible in ZFC. Of course, BB(n) is tiny compared to its relativized cousins. And we aren't even out of the lower attic yet. In the middle and upper attic, there are numbers so large that you need to add extra axioms to ZFC in order for them to exist.

    • @yogaardianto2269
      @yogaardianto2269 4 года назад +2

      @@knightoflambda what is the most faster growing fiction in googology?

    • @pierrecurie
      @pierrecurie 4 года назад

      @@knightoflambda I think they already did an episode on BB. Scott Aaronson proved that computing BB(~8000) requires proving the (in)consistency of ZFC (basically brute forces some statement that is true IFF ZFC is consistent).

    • @purpleapple4052
      @purpleapple4052 4 года назад

      @@knightoflambda they mentioned and explained some Busy Beaver stuff in the video about Rayo's number

    • @isuller
      @isuller 4 года назад +1

      @@knightoflambda actually it is true that BB(n)>TREE(n) for n>k for some k value. But my guess is that "k" is huge itself - I mean it may be bigger than Graham's number. So while it is true that BB is a faster growing function than TREE it doesn't mean that in the region of "normal" numbers BB(n) is bigger than TREE(n) :-)

  • @TheAngelsHaveThePhoneBox
    @TheAngelsHaveThePhoneBox 5 лет назад +77

    12:28 My brain just collapsed into a black hole.
    Edit: Now after seeing the whole video, my brain collapsed into so many black holes that the number of black holes itself collapsed into a black hole and then another black hole and this happened so many times that the number describing it also collapsed into a black hole.

  • @kylebroussard5952
    @kylebroussard5952 Год назад +17

    I love how mathematicians get to a point where they're so smart they start making up numbers a 5 year old would spout off and then act profoundly amazed by a finite number within infinity.

    • @homer4340
      @homer4340 Год назад

      Mathematicians after creating the number galleohalivitoxipityisnlotopiscisis22: 😮

  • @jonipaliares5475
    @jonipaliares5475 5 лет назад +61

    Never thought transfinite ordinals could be useful with something finite like sequences of integers.
    Amazing video!

    • @martinshoosterman
      @martinshoosterman 5 лет назад +4

      Oh man. You should look up the proof of Goodsteins theorem, using trans finite ordinals.
      Its a statement about sequences of numbers which is proven using ordinals.

    • @watcher8582
      @watcher8582 5 лет назад +2

      All the ordinals that were mentioned in this video were still countable, i.e. they can be viewed as representing a (non-standard) ordering of the natural numbers. That is to say, the transfinite ordinals play the role of intrudcing jumps (in this case the jump is taking the diagonal in the constuction of f's). As such, the cardinalities of any of those ordinals is N, and thus all still smaller than that of the reals R.

    • @Lexivor
      @Lexivor 5 лет назад +2

      @@martinshoosterman Goodstein's theorm is fun. The function that calculates the length of Goodstein sequences has an ordinal of epsilon_0, much bigger than Graham's, but nothing compared to TREE.

  • @MilesEques
    @MilesEques 5 лет назад +417

    "This is starting to terrify me now."
    "But I don't need to stop!"

    • @jolez_4869
      @jolez_4869 5 лет назад +9

      ITS TIME TO STOP

    • @ValexNihilist
      @ValexNihilist 4 года назад

      @@jolez_4869 laughed too hard at that

    • @renanmaas3502
      @renanmaas3502 4 года назад +7

      That guy: Reaches an Unthinkably fast growing function that starts to bend the fabric of space-time.
      Also That guy: i CaN CArRy oN...

    • @TheAlps36
      @TheAlps36 3 года назад +1

      Please...please stop. In the name of sanity please stop

    • @Parasmunt
      @Parasmunt 2 года назад +1

      Don't go into the TREES stop stop.

  • @KYZ__1
    @KYZ__1 10 месяцев назад +1

    These big number videos make me unimaginably excited...

  • @3dtesseract853
    @3dtesseract853 5 лет назад +1378

    Every other RUclipsr: "let's plant 20,000,000 trees!" Numberphile: “let's plant TREE(Graham’s Number)!”

    • @AlabasterJazz
      @AlabasterJazz 5 лет назад +94

      Not enough matter in the conceivable universe to plant that many trees

    • @ABaumstumpf
      @ABaumstumpf 5 лет назад +50

      i would highly advise against turning the entire observable universe into to strange matter with more than tree(3) trees in every possible location..... Also it would cost a lot of money.

    • @Ken-no5ip
      @Ken-no5ip 5 лет назад +17

      BACHOMP There probably isnt enough quarks to reach that number

    • @ABaumstumpf
      @ABaumstumpf 5 лет назад +26

      @@Ken-no5ip in the entire observable universe, filled to the limits of the pauli exclusion principle, would not be nearly large enough. Those numbers are just too insanely large.

    • @theheckl
      @theheckl 5 лет назад +55

      that factorial at the end

  • @jetzeschaafsma1211
    @jetzeschaafsma1211 5 лет назад +215

    David Metzler has an excellent 40 part series on the fast growing hierarchy, ordinals and much much further.

    • @michellejirak9945
      @michellejirak9945 4 года назад +39

      I thought this was a joke until I looked it up. Well, now I know what I'll be doing for the next month.

    • @OrbitalNebula
      @OrbitalNebula 4 года назад +10

      There's also Giroux Studios

    • @chaohongyang
      @chaohongyang 3 года назад +8

      @@OrbitalNebula And you, btw you need to make more FGH vids, they are so damn gud

    • @OrbitalNebula
      @OrbitalNebula 3 года назад +5

      Oh yeah. I'm now actually on the progress of making the next big numbers vid. It's just taking me quite long to make.

    • @chaohongyang
      @chaohongyang 3 года назад +4

      @@OrbitalNebula i fully support you, do whatever you want at your own pace homie :)

  • @grantchapman640
    @grantchapman640 4 года назад +36

    21:17 you can’t fool me, you’re just drawing squiggles now

  • @TheDanksNewGroove
    @TheDanksNewGroove 5 лет назад +39

    Even when ignoring the awesome fundraiser, I think this is the coolest video you guys have ever made. Talking about stupidly giant numbers with no physical significance just because it’s fun. I love it, congratulations.

  • @hewhomustnotbenamed5912
    @hewhomustnotbenamed5912 5 лет назад +26

    This is literally the biggest collaboration in RUclips history.
    And it's for the best possible cause.
    I'm genuinely proud of this community.

    • @erik-ic3tp
      @erik-ic3tp 5 лет назад +1

      Me too. This's a 10 out of 10 for Humanity today.

    • @googleuser7771
      @googleuser7771 5 лет назад

      @@erik-ic3tp is 20 million trees a lot of trees?

    • @erik-ic3tp
      @erik-ic3tp 5 лет назад

      Google User, Yes.🙂

  • @methyllithium323
    @methyllithium323 4 месяца назад +9

    At this point, you can't even compare g(TREE(3)) even with TREE(4) because of how much faster TREE grows

    • @jamx02
      @jamx02 6 дней назад

      TREE(4) is much larger than g(g(g(…g(TREE3)..) TREE(3) number of times

  • @spyguy318
    @spyguy318 5 лет назад +17

    I remember the VSauce video on Ordinal Numbers and Infinities; I was prepared for this one. Still amazing that TREE grows even faster than that!

  • @leo17921
    @leo17921 5 лет назад +40

    20:40 funny how its called epsilon 0 cause usually epsilon is used for small numbers

  • @Zwijger
    @Zwijger 2 года назад +35

    It was quite intuitively obvious to me that Tree(n) was way bigger than g(n), the best way I can describe is that 3 is the first number in the Tree sequence to unlock it's full power, as you always have a first sacrificial colour, so you're kinda playing the game with n-1 colours. 0 colours for n=1 obviously stops, 1 colour for n=2 also has to fundamentally stop really quickly, but for n=3 you finally have 2 colours to play with.
    If 2 colours already gives the illusion that Tree(3) might be infinite at first glance, and remember this is the first "real" amount of colours to unlock the Tree game, then it only follows that this graph is exploding quicker with any more colours to play with from that point than anything you can make with normal iterations of mathematical functions, no matter how awesome a way you have to write them to become really big.

    • @PC_Simo
      @PC_Simo 2 года назад +9

      Also, you only have to climb up to the 3rd branch of the TREE-function to already be off-the-scale massively higher, than g(64), which is the 64th rung on Graham’s ladder.

    • @AymanTravelTransport
      @AymanTravelTransport Год назад +1

      @@PC_Simo If you look at it through the levels of googology: level 0 is all the single digit and small numbers tending to zero; then level 1 goes from double-digits to a million; then level 2 goes beyond this all the way to a million digits (yes, googol and virtually every number we can practically deal with in our observable universe doesn't even get past level 2); level 3 starts entering the realms of tetration with googolplex and the likes; level 4 goes well beyond googolplexian and so on. You can see how going up just one level in the realms of googology gets to even greater magnitudes much further away than the levels before it. Well, G1 sits around level 6 or 7 and then G64 is much further at level 12, with fw(n) starting here or the level before it (11) let that sink in. So you can see that the difference between 12 levels is the difference between mere counting and shooting past G64 by iterating the number of arrows. Now you run through all the ordinals from omega through epsilon, zeta, eta until you reach the insane gamma-zero; the latter is all the way up to level 100 in the fast-growing hierarchy, meaning that counting to even G(G(...G(64))) [G64 iterations] would be much faster than using the G(n) function (or even f-epsilon0 for that matter) to reach the monsters produced by fgamma-zero(n). However, even then TREE(3) would laugh at this, as it's all the way up in level 120. That's right, an entire 20 levels ahead of fgamma-zero(n), which is insanely further apart than 0-1 and G64 which is merely 12 levels. This means even using fgamma-zero(n) to reach TREE(3) would be much slower (which is still an understatement) than merely counting to G64, even if you were to count in base 1/G64.

  • @SoleaGalilei
    @SoleaGalilei 5 лет назад +18

    I'm no mathematician, but thanks to your past videos I laughed out loud when I saw what this one was about, knowing we were in for another round of "STUPID big"!

  • @armityle29
    @armityle29 5 лет назад +10

    This was geniunely one of my favorite videos ever to have been uploaded to this channel.

    • @PC_Simo
      @PC_Simo 2 месяца назад

      I fully agree 👍🏻.

  • @sejdatalukder6798
    @sejdatalukder6798 2 года назад +12

    one thing that i find interesting is that tree(65) is already way bigger than g(tree(64))

  • @Veptis
    @Veptis 5 лет назад +32

    in the first 3 hours they are past 1 Million, hope this keeps afloat for a while

    • @erik-ic3tp
      @erik-ic3tp 5 лет назад +1

      It's mind-blowing what crowdfunding could do if done right.

    • @Veptis
      @Veptis 5 лет назад +1

      @@erik-ic3tp it's a giant collaboration, so that is unprecedented.

    • @pluto8404
      @pluto8404 5 лет назад

      @@Veptis "collobaration"
      you mean the 1% sit back and take all the credit while their followers donate all the money.

    • @Veptis
      @Veptis 5 лет назад +12

      @@pluto8404 no, if it weren't for those people to initiate it and produce unified content on the topic. such an effort wouldn't be possible uncoordinated.

    • @pluto8404
      @pluto8404 5 лет назад +1

      @@Veptis I suppose we do need a large unification to combat all the carbon their Manson's and sports cars put out.

  • @00blaat00
    @00blaat00 5 лет назад +5

    I love the hint of fear that trickles through his enthusiasm when discussing the functions over Gamma-Naught: "We must tread lightly here, lest we disturb the Old Ones who dwell in these regions..."

  • @happygimp0
    @happygimp0 5 лет назад +118

    "512, quite big number"
    7:10

    • @LeBronJames-sj7ds
      @LeBronJames-sj7ds 4 года назад +2

      LOLOLO

    • @dylanmcadam8509
      @dylanmcadam8509 3 года назад +14

      Compared to the number in this video there is like no difference between 512 and -googleplex

  • @zmaj12321
    @zmaj12321 5 лет назад +40

    Best Numberphile video in a while, but NOT for the faint of heart.

  • @KhalidTemawi
    @KhalidTemawi 5 лет назад +14

    One of the best videos of Numberphile!

  • @ShahromUK
    @ShahromUK Месяц назад +2

    The fact that Tree(G64) is still smaller than Rayo's number is just crazy

  • @tspander
    @tspander 5 лет назад +4

    So nice to see so many channels contribute to #TeamTrees

  • @coreyburton8
    @coreyburton8 5 лет назад +4

    You have combined my two favorite numberphile videos! Thank you!

  • @bryanc1975
    @bryanc1975 2 года назад +16

    I read a cool description of Graham's number somewhere, in terms of trying to picture it in universal physical terms. If my memory serves me, it went like this: It said that even the integer describing the number of digits in Grahams number could not be represented if you made every particle in the universe a digit, and the same would be true for the number of digits in THAT number, and even if you went down that "number-of-digits-in-the-previous number" scale, with each level down being represented by a single particle in the universe, you still would not able able to fit it into the known universe. I wish I could find that again.

    • @r.a.6459
      @r.a.6459 2 года назад +3

      In fact, g(1) itself, defined as 3↑↑↑↑3, is bigger than googolplexplex...plexplex (with googolplex 'plex'es)

    • @vokuheila
      @vokuheila Год назад +1

      In fact, the number of digits in Graham's number is approximately Graham's number...

    • @hurricane3518
      @hurricane3518 8 месяцев назад

      its on wikipedia

  • @limbridk
    @limbridk 5 лет назад +6

    For sure one of the best videos on my favorite channel.
    Such elegant insanity.
    Love it!

  • @lordheaviside2605
    @lordheaviside2605 5 лет назад +7

    Your original videos on Graham’s number are what got me so into googology in the first place. I can’t express how incredible it feels to see a Numberphile video on the fast-growing hierarchy! I love your videos so much!

  • @lgbfjb7160
    @lgbfjb7160 10 месяцев назад +1

    Im terrible at math but I'm facinated at how incomprehensible these numbers are and how i still feel that somehow i could fathom it knowing i never will.

  • @innerufomaker
    @innerufomaker 5 лет назад +42

    Loved this video. The like button wasn’t enough for me. I’ve always used to do this sick thing of imagining very very big numbers, steps and distances since I was 5-6 y/o and it got to a point that I had to stop doing that. This video made me feel a part of my life which I’ve never been able or tried to share with someone else.
    I reply “speed” when I’m asked about my favorite thing in the world, and they think I just like to drive fast. In fact, I mean exponential growth of exponential growth of .... .

    • @geekjokes8458
      @geekjokes8458 5 лет назад +8

      I understand that feeling very well... im not sure about it being my favourite, but i do get excitedly anxious, it kinda hurts, about this sort of big...ness
      It's so unthinkably big, profoundly and absolutely indescribable... art, it seems, like the cosmic horror style of storytelling, is the only thing that can "properly" assign some meaning to this feeling, maybe precisely because it forgoes logic.
      Art, and mathematics.

    • @erik-ic3tp
      @erik-ic3tp 5 лет назад +1

      iUFOm, Same for me too.😊

    • @NoriMori1992
      @NoriMori1992 5 лет назад +1

      That's beautiful.

    • @NoriMori1992
      @NoriMori1992 5 лет назад +2

      Have you ever watched the Vsauce video "How To Count Past Infinity"?

    • @erik-ic3tp
      @erik-ic3tp 5 лет назад +1

      NoriMori, I’ve watched it yes.🙂

  • @fractlpaca6285
    @fractlpaca6285 5 лет назад +14

    This reminds of dreams I have when I have a fever...
    A tiny point would suddenly explode to gargantuan size, then compound upon its own size, until it filled my mind.
    Or marbles would arrange themselves into huge sparse, patterns while multiplying all the time....

    • @Crazylom
      @Crazylom 4 года назад +4

      Newer thought there would be something so out of world and so "same" at the...same...time.

    • @drumroll7073
      @drumroll7073 4 года назад +1

      U are not alone.
      Also this dream has a very bad taste.
      i hate this dream for no reason...

    • @jpdemer5
      @jpdemer5 3 года назад

      That's why I stopped doing drugs.

  • @neotaharrah6478
    @neotaharrah6478 2 года назад +2

    This is one of the most mind blowing mathematical things I have ever seen. This is completely outrageous!

  • @xyz.ijk.
    @xyz.ijk. 3 года назад +6

    I looked up how to express TREE(3) in terms of Gx. Here is the lower bound: G3[187196]3 (compared to G3(64)3). No wonder the growth is so astounding with TREE(x).

    • @Dexuz
      @Dexuz 2 года назад +1

      That doesn't seem right at all, you can't express the value of TREE(3) in a function that grows infinitely slower than the TREE(3) function, just as you can't express the value of Graham's Number in any F(finite ordinal).

    • @R3cce
      @R3cce Год назад +1

      @@Dexuz TREE(n) is between the SVO and LVO in fast growing hierarchy

    • @xyz.ijk.
      @xyz.ijk. Год назад +1

      ​​@Dexuz I agree, but I'm reporting what I looked up, I wouldn't dare claim to have calculated such a thing!

    • @thefirstsurvivor
      @thefirstsurvivor 9 месяцев назад +1

      theres no proof it's between those@@R3cce

  • @NoahTopper
    @NoahTopper 5 лет назад +59

    The amount of times I just yelled "No way!" alone in my room is only slightly embarrassing.

  • @PXKMProductionsGaming
    @PXKMProductionsGaming Год назад +7

    I'd love to see more explanation videos on these higher level infinities. Also, despite being messy, I'm so curious about what stuff comes after Gamma Zero (or f(gamma zero)!
    I come back to this video a lot. how big numbers can get is so interesting to me.

    • @R3cce
      @R3cce Год назад +4

      The Small Veblen Ordinal (SVO) is the next ordinal after Gamma zero. After the SVO comes the Large Veblen Ordinal (LVO)

  • @Megamegalomane92
    @Megamegalomane92 5 лет назад +107

    You can go beyond gamma zero.
    f gamma zero: "This isn't even my final form!!!"

    • @martinshoosterman
      @martinshoosterman 5 лет назад +5

      Yeah. As far as I know you can go as far as f ω₁ ie, you can have f of anything smaller than ω₁ but you cannot define f for ω₁

    • @donandremikhaelibarra6421
      @donandremikhaelibarra6421 2 года назад

      @@martinshoosterman yes but you surely can’t have an f of an inaccessible cardinal right?

    • @martinshoosterman
      @martinshoosterman 2 года назад

      @@donandremikhaelibarra6421 you can't even do f(omega_1) much less an inaccessible cardinal.

    • @donandremikhaelibarra6421
      @donandremikhaelibarra6421 2 года назад

      @@martinshoosterman is the inaccessible cardinal bigger than an infinite amount of alephs nested together?

  • @parkerwest6658
    @parkerwest6658 5 лет назад +39

    Just got flashbacks to the vsause vid about ordinal numbers

    • @SpektralJo
      @SpektralJo 5 лет назад +3

      But his video was about cradinals

    • @twigwick
      @twigwick 5 лет назад

      same lol

    • @naresu
      @naresu 5 лет назад +1

      Was reminded about aleph

  • @modernwarriorsystems7347
    @modernwarriorsystems7347 4 года назад +2

    When I was in engineering classes, I would have LOVED to have him as my teacher.

  • @AaronSmith1
    @AaronSmith1 5 лет назад +8

    I'd really like Numberphile to do at least one more video on TREE(3). Specifically, I still don't quite get how it grows so quickly. Maybe if I saw more examples using 3 seeds I'd get it? Not sure. It seems like either it should be infinite or the number would be smaller with 3 seeds. Graham's Number seemed a lot more logical in the way it's built up. With TREE(3) I still feel like I'm being asked to just take it on blind faith that it's really, really big.

    • @R3cce
      @R3cce Год назад +1

      Even TREE(4) is bigger than GGG….G(TREE(3)) where the number of G iterations is TREE(3) itself. Just to show how fast TREE(n) grows

    • @R3cce
      @R3cce Год назад +1

      Ever heard of SSCG(3)? It’s even bigger than TREE(TREE(…..(TREE(3)) with TREE(3) iterations of TREE

  • @letmark111
    @letmark111 2 года назад +5

    the thing I dislike about numberphile is that they never explain how people figured out anything and so you're just left feeling as though you didn't really learn anything but instead just heard of something

    • @smallkloon
      @smallkloon 2 года назад +1

      I agree, but I understand why they don't.

    • @douche8980
      @douche8980 2 года назад +1

      Its pretty easy for folk like me with an IQ of 80 so these folks with IQ nearly fifty percent higher can understand these numbers and the growth rate by which numbers are made. That is true but the FGH they mention in this video is like addition compared to the highest ordinal they mentioned ok said video. This process goes on for infinity. So absolutely infinity can't exist since there is more than an infinite amount of such.

  • @BigDBrian
    @BigDBrian 3 года назад +1

    Half this video is just Tony trying to find words to express the magnitude of these sizes, and we love it

  • @danielstephenson7558
    @danielstephenson7558 5 лет назад +75

    And as everyone knows we get Omega-3 from fish. So this video is telling me: plant Trees using fish.

  • @lucamaci3142
    @lucamaci3142 5 лет назад +18

    I've genuinely got goosebumps
    Edit: lol thanks for the 7 likes. I have a question tho...
    Tree(x) > G(tree(3))
    What's the smallest x?

  • @gedstrom
    @gedstrom 6 месяцев назад +2

    Tree(3) may be universes beyond G64 in size, but G64 is a LOT easier to understand how it is generated, even though we can't even begin comprehend its size. I can't even begin to comprehend how Tree(3) is computed!

  • @seanspartan2023
    @seanspartan2023 5 лет назад +6

    We need an extra footage video about Ordinal Collapsing functions

  • @jj.wahlberg
    @jj.wahlberg 5 лет назад +17

    Ah the iconic “Paper Change” music returns

  • @Briekout
    @Briekout 14 дней назад +1

    How do folks wrap their brains around adstracts like this? So cool!

  • @guycomments
    @guycomments 5 лет назад +14

    for more on ordinals go watch VSauce's video "counting past infinity"

  • @HeroDarkStorn
    @HeroDarkStorn 5 лет назад +53

    RUclips: Let's all talk about trees.
    Numberphile: Challenge accepted

  • @jonciobanu4546
    @jonciobanu4546 2 года назад +1

    Just the fact that no finite f(n) hierarchy could describe the growth rate of Graham's number, let alone TREE(n), blows mind mind. Truly shows how unimaginably large those numbers are.

  • @callumsylvester9921
    @callumsylvester9921 5 лет назад +8

    Finally, a worthy opponent!
    Our battle will be legendary!

  • @illogicmath
    @illogicmath 5 лет назад +15

    Making all these videos Brady practically became a mathematician.

  • @JasonVacare
    @JasonVacare 5 лет назад +7

    This is a tremendous video, thank you Brady and Ron! With TREE and G and Busy Beaver numbers, I've always wondered how to categorically compare their growth. BTW, you should totally do a video on the Busy Beaver number sequence!

  • @natheniel
    @natheniel 5 лет назад +7

    4:24 I didn’t know I miss the paper change so much until I see one

  • @pierreabbat6157
    @pierreabbat6157 5 лет назад +96

    When I get to Heaven, I hope to have a computer that can handle numbers like TREE(g(64)).

    • @cannabiscupjudge
      @cannabiscupjudge 5 лет назад +27

      Maybe Heaven is a computer that can handle numbers like TREE(g(64)).

    • @haronka
      @haronka 5 лет назад +8

      What about this one:
      TREE(TREE(TREE(TREE(...(TREE(3))...))))
      with g(g(g(g(....(g(64))...))))) TREEs
      Where there are TREE(3) g-s
      (Yes I know that there are much bigger names number then this)

    • @carbrickscity
      @carbrickscity 5 лет назад +8

      Yet there are uncomputable numbers.

    • @lumi2030
      @lumi2030 5 лет назад +4

      TREE(n) is uncomputable.

    • @haronka
      @haronka 5 лет назад +8

      @@lumi2030 I don't think it is, but I will look it up
      Edit: it is computable

  • @sergeboisse
    @sergeboisse 11 месяцев назад +2

    One interesting thing is that not one could describe the *difference* between those kind of monster numbers without using substraction. I mean, we can construct numbers likeTREE(g(64)) and g(TREE(64)), just with addition, multiplication, exponentiation, and so forth, but no one can ever describe a procedure that could compute or even approximate their difference *d* = g=TREE(g(64)-g(TREE(64)) in finite time without using the substraction operation. I claim that this number, *d* simply does not exist. I claim that, against all appearances, the set of integer numbers is essentially full of void and maybe even it could be that card(N) is finite.

  • @NoswadYT
    @NoswadYT 5 лет назад +35

    I remember being outside his office when they were filming this 😂

  • @LukePalmer
    @LukePalmer 5 лет назад +37

    17:00 - 22:00 is literally just 5 minutes of woah massive HuUgGeEeE wowowowow gamma! alpha!! epsilon OF epsilon!!! UNIMAGINABLY you just can't even WOW it's MATH!!!!!!

    • @CalvinHikes
      @CalvinHikes 5 лет назад +2

      Isn't it still a small number though? I mean it's hard to imagine but it's a lot closer to 0 than it is to the infinite numbers larger than it. Relative to all numbers, it is a very small number. It's just a number that is larger than we have need for use of.

    • @doicaretho6851
      @doicaretho6851 5 лет назад +4

      @@CalvinHikes Yes, it's smaller than almost every other number

    • @TheJulianmc
      @TheJulianmc 5 лет назад

      @@doicaretho6851 Dont think so, since its defined beyond the cardinal numbers.

    • @Xomage999
      @Xomage999 5 лет назад +1

      So basically every time someone talks about power levels on DBZ.

    • @tabeshh
      @tabeshh 5 лет назад +2

      @@doicaretho6851 Does that mean every single number is relatively small?

  • @mAximUm123451
    @mAximUm123451 2 года назад +4

    18:50 "this terrifies me... but I don't need to stop!"
    A true classic

  • @illogicmath
    @illogicmath 5 лет назад +23

    This really exceeds my ability to comprehend.

    • @DFPercush
      @DFPercush 5 лет назад +7

      Don't worry, it exceeds the physical universe's ability to comprehend too.

  • @10000Subs
    @10000Subs 5 лет назад +75

    RUclips should really rename themselves to YewTube at this point, it's been overthrown by trees!

    • @matchstickgameplay
      @matchstickgameplay 5 лет назад +10

      *overgrown

    • @philkovach948
      @philkovach948 5 лет назад +2

      As a dad, I approve this joke

    • @U014B
      @U014B 5 лет назад +8

      I wood've axpected better joaks here. Yule never be poplar sitting on your ash resting on your laurels. Teak some pride in your work, fir crying out loud!

    • @yvesnyfelerph.d.8297
      @yvesnyfelerph.d.8297 5 лет назад +2

      JewTube may be interpreted as racist. Especially with content about big numbers...

    • @10000Subs
      @10000Subs 5 лет назад

      @@yvesnyfelerph.d.8297 Can't tell if this is a joke or...?

  • @michaelfiedler1419
    @michaelfiedler1419 4 года назад +4

    The most impressive thing of G(64) is the fact that we're talking of dimensions. How do you travel through G(64) dimensions?

  • @yuvalne
    @yuvalne 5 лет назад +183

    People: there's no way Numberphile can join the #teamtrees thing
    Numberphile: hold my beer

    • @masterimbecile
      @masterimbecile 5 лет назад +35

      Hold my Klein bottle.

    • @yuvalne
      @yuvalne 5 лет назад +6

      @@masterimbecile darn it should have seen that joke

    • @TheScarrMann
      @TheScarrMann 5 лет назад +2

      With the amount of paper used in these videos I'd be shocked if they didn't

    • @triqky9301
      @triqky9301 5 лет назад +2

      Well he did use paper...

    • @trevorx7872
      @trevorx7872 5 лет назад +1

      Hold my juice

  • @Chalisque
    @Chalisque 5 лет назад +6

    Since TREE, Friedman has exhibited an even fast growing function: SSCG. Maybe worth mentioning something about it sometime.

    • @R3cce
      @R3cce Год назад +1

      SSCG(3) is even bigger than TREE(TREE(…….(TREE(3))…)) with TREE(3) TREE’s

  • @aliroostaei9122
    @aliroostaei9122 2 года назад +2

    These videos are so amusing to watch, even for a nerdy med student❤

  • @wafflefox6393
    @wafflefox6393 5 лет назад +4

    Oh boy oh boy! I already liked this video, but I'm gonna watch it later when I can give it full attention. Tree v Graham's number, yis!

  • @non-inertialobserver946
    @non-inertialobserver946 5 лет назад +61

    TREE(g64): exists
    g(TREE64): Finally, a worthy opponent. Our battle will be legendary

    • @jolez_4869
      @jolez_4869 5 лет назад +25

      TREE(TREE(3)) joins the game

    • @AndrewTyberg
      @AndrewTyberg 5 лет назад +8

      But the second number is basically 0 compared to the first number.

    • @mapari00
      @mapari00 4 года назад +7

      This could be perfectly fine in the context of the quote, as tai lung thought he would defeat the dragon warrior, but in fact got stomped as if he was nothing.
      Later in the fight: “The Wu Shi finger hold?!?!?! Shi Fu didn’t teach you that!!!!!!!”
      “Nah, I figured it out. Scadoosh!!”

    • @isaacwebb7918
      @isaacwebb7918 4 года назад +12

      @@jolez_4869 Even TREE(TREE(3)) won't match SSCG(3). SSCG is for 'simple sub-cubic graph,' and it works similarly to the tree problem and resulting function, except there are fewer rules for simple sub-cubic graphs, making more graphs possible, and therefore (much, much, much...) longer sequences. SSCG(n) forms a similar sequence to TREE(n) (in that it describes maximum lengths of non-repeating sequences for a given number of tags, and in starting small and exploding by n=3), but outpaces it easily -- SSCG(3) is greater than TREE(TREE(TREE(TREE(TREE(...TREE(3)))))) -- if you nested that TREE(3) layers deep.
      TM,DR (Too math, didn't read) -- there's always a bigger function.

    • @jolez_4869
      @jolez_4869 4 года назад

      @@isaacwebb7918 Wow damn. Thats interesting!

  • @lennonsiurua620
    @lennonsiurua620 4 года назад +3

    Understanding the math sequence is beyond me. But watching Tony get excited about math is so entertaining.