Two Solutions to International Mathematical Olympiad 1986 Problem 1

Поделиться
HTML-код
  • Опубликовано: 13 дек 2024

Комментарии • 14

  • @ManuelRuiz-xi7bt
    @ManuelRuiz-xi7bt 2 года назад +5

    Let 13n - 1 = c² for some c in N. The only way c² = -1 (mod 13) is for c = +/-5 (mod 13). So let c = 13u +/- 5 for some u in N.
    13 n = c² + 1
    13 n = 13.13 u² +/- 13.10 +25 + 1
    n = 13 u² +/- 10 u + 2
    Discriminant = 100 - 104 < 0 -> no solutions for u, nor for n. Done.

    • @moonlightcocktail
      @moonlightcocktail Год назад

      Discriminant is 100 - 52(2 - n) for which solutions could exist. It is unreasonable to assume n = 0

    • @ManuelRuiz-xi7bt
      @ManuelRuiz-xi7bt Год назад

      @@moonlightcocktail You are right. I messed up.

  • @mathslove89
    @mathslove89 3 года назад +1

    Thanks

  • @TheColoursofMathematics
    @TheColoursofMathematics 3 года назад

    Thanks a lot!

  • @vaibhavcm7503
    @vaibhavcm7503 3 года назад +2

    Please explain the second proof again please.....

  • @dominikwolski2274
    @dominikwolski2274 3 года назад +5

    1. n must be odd, substitute n=2m+1
    2. multiply all 3 numbers, you'll get polynomial in m, with constant term equal 38 and all other terms divisible by 4
    3. 38 is 2 mod 4, all other terms will always be 0 mod 4, i.e. the product is always 2 mod 4
    4. the product itself should be perfect square, so it must not be 2 mod 4
    done

    • @hydra147147
      @hydra147147 3 года назад +1

      Isn't the coefficient 48? After all, multiplying all numbers for n=1 gives 48 which is divisible by 4.

  • @anjaneyasharma322
    @anjaneyasharma322 3 года назад

    Take n = 13 2 2 resptly

  • @techysubham1939
    @techysubham1939 3 года назад

    Crisp

  • @gauravbharwan6377
    @gauravbharwan6377 3 года назад

    Bring some animation video

  • @advaykumar9726
    @advaykumar9726 3 года назад

    First