MIT 2023 Quarterfinals #1-1

Поделиться
HTML-код
  • Опубликовано: 5 янв 2025

Комментарии • 11

  • @dkravitz78
    @dkravitz78 2 дня назад +4

    Long division way easier. Goes right to x^4-2x^5/(1+x^2) with the quotient easy to long divide.

    • @owlsmath
      @owlsmath  2 дня назад +2

      Hi David. yep exactly. That was the method from the video (or something similar). I think I created an x^4 - 1 before dividing.

    • @slavinojunepri7648
      @slavinojunepri7648 2 дня назад +1

      Awesome suggestion

  • @dalek1099
    @dalek1099 День назад +1

    I split the (1-x)^2 into -2x and 1+x^2. From there I used u substituion in the first integral u=1+x^2 and then the 2nd is just the integral of x^4.

    • @owlsmath
      @owlsmath  День назад

      Interesting! Soooo many ways to do this one :)

  • @slavinojunepri7648
    @slavinojunepri7648 2 дня назад +1

    Excellent

  • @raghvendrasingh1289
    @raghvendrasingh1289 2 дня назад +1

    also integral of x^2 (1 - x)^2/(x^2+1) in [0,1] = ln 2 - 2/3
    hence
    2/3 < ln 2 < 7/10
    and we know that
    ln 2 = 0.6931 (nearly)

  • @doronezri1043
    @doronezri1043 2 дня назад +1

    Excellent video👏👏👏 Great job with the sum of geometric series and (even more) the identification of the resulting sums🍻

    • @owlsmath
      @owlsmath  2 дня назад

      Thanks Doron! Cheers :) 🍻