- Видео 125
- Просмотров 10 342
Johannes Schmitt
Добавлен 11 июн 2013
01.05 Functions on affine varieties
Lecture: Algebraic Geometry
Lecturer: Johannes Schmitt
Lecturer: Johannes Schmitt
Просмотров: 166
Видео
01.03 Correspondence of affine varieties and ideals via the Nullstellensatz
Просмотров 18710 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
01.04 Consequences of the Nullstellensatz
Просмотров 17810 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
01.02 Properties of vanishing sets
Просмотров 23310 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
01.01 Affine varieties
Просмотров 35710 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
01.06 Affine subvarieties and relative vanishing ideals
Просмотров 14710 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
A02.1 Basics of topology
Просмотров 9210 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
02.02 Irreducible and connected topological spaces
Просмотров 10610 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
02.03 Irreducible affine varieties
Просмотров 12010 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
02.04 Noetherian spaces and irreducible decompositions
Просмотров 10310 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
02.01 Definition of the Zariski topology
Просмотров 14310 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
A02.2 Connected components
Просмотров 9310 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
01.07 Products of affine varieties
Просмотров 14310 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt Fact on reduced rings: math.stackexchange.com/a/1630178/311445
02.05 Irreducible decompositions of affine varieties
Просмотров 8010 дней назад
Lecture: Algebraic Geometry Lecturer: Johannes Schmitt
I'm sorry. I have a question about stacks, and I didn't know where to ask. I understand the definition (from Toen's masterclass), but I do not "get it." Is there a simple, intuitive way to explain it so that we can compute non-trivial stuff from it? I can believe that a notion of a moduli spaces are naturally stacks. But the groupoids block my view of geometry.
I wrote an introduction to stacks from a perspective of moduli spaces in Section 5.1 of my lecture notes here: johannesschmitt.gitlab.io/ModCurves/Script.pdf Maybe that helps to form a bit of intuition?