Edward Malthouse
Edward Malthouse
  • Видео 347
  • Просмотров 371 963

Видео

8 Introduction to Migration model for lifetime value
Просмотров 3903 года назад
This shows how to use Markov Chains to estimate customer lifetime value, called the migration model
10 Migration model lifetime value applications part 2
Просмотров 4483 года назад
More examples of how to apply the migration (Markov chain) model for customer lifetime value
9 Migration model lifetime value applications part 1
Просмотров 2593 года назад
Examples of how to apply the migration model (Markov chain) for estimating customer lifetime value
7 Discrete time survival model for customer lifetime value
Просмотров 1,5 тыс.3 года назад
I show how to estimate retention rates for customer lifetime value using the discrete time survival model
6 General retention model for lifetime value with stratification in R
Просмотров 3093 года назад
I show how to use R to estimate retention rates for lifetime value
3. General retention model (GRM) for lifetime value
Просмотров 3243 года назад
This defines the general retention model (GRM) for customer lifetime value (CLV). I show how to compute CLV using Excel if the retention probabilities are provided.
5. Kaplan-Meier estimate of retention rates for general retention model of lifetime value
Просмотров 5023 года назад
This covers the Kaplan Meier estimate of survival probabilities and applies them to estimating customer lifetime value.
4. Simple retention model (SRM) for lifetime value in Excel
Просмотров 2943 года назад
This shows how to compute the PDF, expected value and lifetime value by "brute force" in Excel, as well as with the formulas derived in my other video.
2. Simple retention model for lifetime value
Просмотров 4253 года назад
This covers the simple retention model for estimating customer lifetime value (CLV). I discuss the assumptions, show how to compute the expected time until cancelation and the lifetime value with or without payments at time 0.
1. Intro to customer lifetime value (CLV)
Просмотров 5493 года назад
Introduces the concepts of customer profitability, customer lifetime value, prospect lifetime value, customer equity for customer evaluation
5 Picking number of clusters, profiling
Просмотров 8503 года назад
This video discusses different ways of selecting the number of clusters including using the objective function value, pseudo F, silhouette statistics and managerial implications. I show how to profile clusters using one-way ANOVA and the chi-square test of independence.
9. Latent class analysis
Просмотров 7863 года назад
This introduces the latent class model
8. Gaussian mixture model part 2
Просмотров 3443 года назад
Bivariate and multi-variate Gaussian mixture model in R and python
7. GMM part 1
Просмотров 3743 года назад
Introduction to Gaussian mixture models. This covers the basic distributions: class-conditional, prior, posterior, observed. I show to estimate it in R and Python.
6 Breaking K means and algorithms
Просмотров 2493 года назад
6 Breaking K means and algorithms
3 Running K means in R
Просмотров 2943 года назад
3 Running K means in R
4 Cluster analysis steps
Просмотров 9073 года назад
4 Cluster analysis steps
2 One way ANOVA review for cluster analyssi
Просмотров 8843 года назад
2 One way ANOVA review for cluster analyssi
1 Intro to clustering
Просмотров 3603 года назад
1 Intro to clustering
Introduction to dimension reduction recommender systems
Просмотров 1463 года назад
Introduction to dimension reduction recommender systems
Introduction to latent variables
Просмотров 2,3 тыс.3 года назад
Introduction to latent variables
Principal curves
Просмотров 1,2 тыс.3 года назад
Principal curves
PCA examples
Просмотров 6723 года назад
PCA examples
5 4 Koyck Intervention
Просмотров 883 года назад
5 4 Koyck Intervention
5 2 lags and Koyck
Просмотров 2953 года назад
5 2 lags and Koyck
5 5 introduction to vector autoregression models
Просмотров 3283 года назад
5 5 introduction to vector autoregression models
5 3 Causality and Quasi experimental designs
Просмотров 1473 года назад
5 3 Causality and Quasi experimental designs
5 1 Introduction to Dynamic Regression
Просмотров 1,5 тыс.3 года назад
5 1 Introduction to Dynamic Regression
4 2 ARIMA Autoregressive models
Просмотров 3023 года назад
4 2 ARIMA Autoregressive models

Комментарии

  • @daniog1939
    @daniog1939 8 дней назад

    Thank you very much

  • @ZK-od3db
    @ZK-od3db Месяц назад

    This is one of the best example of partial plots to explain the relationship between variables and responses in Random Forest.

  • @jakibrus5551
    @jakibrus5551 Месяц назад

    hi , can i have that pdf you are using in this video?

  • @Hecki_A
    @Hecki_A Месяц назад

    Very Nice 👍

  • @thieuvu1467
    @thieuvu1467 2 месяца назад

    How did you get the value "1" (the upper bound) for the last two (0ne-Sided) CI's?

  • @jishanahmed225
    @jishanahmed225 2 месяца назад

    Thanks for sharing amazing lectures. I was wondering if you could organize courses as a form of playlist so that audience can follow lecture sequences more smoothly?

  • @pathnrb
    @pathnrb 4 месяца назад

    Thankyou ♥️

  • @fojico1234
    @fojico1234 5 месяцев назад

    Great lecture, any source on their relation to the encoder-decoder deep learning models?

  • @HiasHiasHias
    @HiasHiasHias 6 месяцев назад

    Understood some lecture slides now

  • @adi-sharma
    @adi-sharma 7 месяцев назад

    What is the meaning of a customer getting censored?

  • @Ramu_Arjun78965
    @Ramu_Arjun78965 10 месяцев назад

    your lecture is so awesome please upload more videos 🤩😌

  • @Ramu_Arjun78965
    @Ramu_Arjun78965 10 месяцев назад

    awesomee 🤩

  • @Ramu_Arjun78965
    @Ramu_Arjun78965 11 месяцев назад

    awesome🤩

  • @AnonymousDAT-oh5vi
    @AnonymousDAT-oh5vi Год назад

    Thank you for such detailed explanation. Gonna explore all of your time series videos now.

  • @Bksemsem
    @Bksemsem Год назад

    This should get more views ! Thanks alot !

  • @sanafarahani6472
    @sanafarahani6472 Год назад

    Thank you! i was looking for a solution abbout how to calcualte the second moment. you explained well.

  • @justsomegirlwithoutamustac5837

    YOU'RE THE BEST TEACHER IVE EVER MET THANJ YOU SO MUCH FOR YOUR VIDEO <3

  • @happygrace8065
    @happygrace8065 Год назад

    Thank you Sir

  • @Bksemsem
    @Bksemsem Год назад

    This is by far the best explanations for such a topic on youtube. You really have my uttermost respect and gratitude.

  • @Durgeshkumar-mn5lt
    @Durgeshkumar-mn5lt Год назад

    great sir , thanks alot

  • @aundo1647
    @aundo1647 Год назад

    great teaching style, thank you!

  • @basharmohammad5353
    @basharmohammad5353 Год назад

    Thanks a lot

  • @changdali1330
    @changdali1330 Год назад

    Incredibly clear. Your interpretation is way better than my professor's! Thank you, sir.

  • @Mewgu_studio
    @Mewgu_studio Год назад

    Thank you for all your videos!

  • @includestdio.h8492
    @includestdio.h8492 Год назад

    >return("thank you professor")

  • @peikspencer9422
    @peikspencer9422 2 года назад

    I typed out the function manually if anyone wants it freqdist=function(x, freqorder=F) { Counts=table(x) n=sum(counts) if (freqorder) ord=order(-counts) else ord+1:length(counts) data.frame( row.names=row.name(counts[ord]), Counts=as.vector(counts[ord]), Percent=100*as.vector(counts[ord])/n, CumCount=cumsum(as.vector(counts[ord])), CumpPercent=100*cumsum(as.vector(counts[ord]))/n ) } Some formatting will of course be needed.

  • @tracyyang1832
    @tracyyang1832 2 года назад

    Can you provide the link for this amazon data?

  • @tracyyang1832
    @tracyyang1832 2 года назад

    This series of videos are really great! Thank you so much. Wondering is it possible to upload the video notes here?

  • @farelinho6576
    @farelinho6576 2 года назад

    I love u

  • @RobertChen-qv5gz
    @RobertChen-qv5gz 2 года назад

    perhaps women are richer than men

  • @yt-1161
    @yt-1161 2 года назад

    @12:00 so just because the y-distance from the intersection point to x2 is longer, the probability that it came from class 2 is higher ? I see that Posterior is direct proportional to conditional to class conditional distribution times prior, so it would also depend on prior, am I wrong ?

  • @alessandrorosati969
    @alessandrorosati969 2 года назад

    How can you do misclassification in mclust when there is a noise ?

  • @yt-1161
    @yt-1161 2 года назад

    What kind of script is that ?

  • @yt-1161
    @yt-1161 2 года назад

    @1:08 when you refer to "last week" which video is that ? There's no playlist for this subject. Your lectures are very good but in a random order

  • @alishermirmanov5608
    @alishermirmanov5608 2 года назад

    Thanks!!

  • @henrikswedish378
    @henrikswedish378 2 года назад

    This is what RUclips should be used for. Very clear and easy to follow. Thank you

  • @thomasjefferson6225
    @thomasjefferson6225 2 года назад

    Is there any way I could get your pdf that youre presenting off of? Quality material. '

  • @wenfanghu3724
    @wenfanghu3724 2 года назад

    Really like your way of teaching! I learned a lot from watching your series of videos. Thank you!

  • @Pooh991
    @Pooh991 2 года назад

    Excelent video, professor. Really thorough explanation. Thank you for sharing this.

  • @Martyr022
    @Martyr022 2 года назад

    is there any way we can get the PDF copy of these notes?

  • @onpointux
    @onpointux 2 года назад

    Very good, will be consuming a lot more videos from your channel. Thanks so much!

  • @Henry4pf
    @Henry4pf 2 года назад

    🐐🐐

  • @TimeIsLife_Kiqi
    @TimeIsLife_Kiqi 2 года назад

    Very helpful! The best video on this topic.

  • @mkd4524
    @mkd4524 2 года назад

    much clear explanation than my prof

  • @kierballar4218
    @kierballar4218 2 года назад

    thank you :)

  • @fullpowersuperperfectcell3799
    @fullpowersuperperfectcell3799 2 года назад

    Wow! This is fantastic. I want to thank you for helping me with my frequency distribution graph.

  • @kevinfine5181
    @kevinfine5181 2 года назад

    this video was actually amazing. I haven't understood stats for the two years of uni, now in my third and watching this video actually clicked everything together for me. I usually don't comment on stuff but just wanted to show my appreciation for your help. thank you so much!

  • @AJ-et3vf
    @AJ-et3vf 2 года назад

    awesome video sir. thank you

  • @rafaelmello3823
    @rafaelmello3823 2 года назад

    Thanks so much for these series of video, It has been so helpful!

  • @stat1726
    @stat1726 2 года назад

    Very good interpretation.. indeed