- Видео 66
- Просмотров 51 869
danalytix AI
Германия
Добавлен 31 мар 2020
Willkommen bei danalytix AI, wo Innovation auf Expertise trifft!
Unsere Mission ist es, Unternehmen und Einzelpersonen mit hochmodernen Lösungen in den Bereichen maschinelles Lernen, künstliche Intelligenz und Datenwissenschaft zu unterstützen. Egal, ob Sie hier sind, um zu lernen, zu erkunden oder bei KI-gesteuerten Technologien an der Spitze zu bleiben, Sie sind hier richtig.
Von umsetzbaren Erkenntnissen bis hin zu fortschrittlichen KI-Implementierungen decken wir alles ab - wir vereinfachen komplexe Konzepte und zeigen, wie KI Branchen verändern kann.
Wenn Sie unsere Inhalte wertvoll finden, vergessen Sie nicht, sich anzumelden und auf die Schaltfläche „Gefällt mir“ zu klicken. Teilen Sie uns gerne Ihre Gedanken und Fragen in den Kommentaren mit - wir freuen uns, von Ihnen zu hören!
Ihr danalytix AI-Team
Termin buchen: calendly.com/danalytixai/erstgesprach-meeting-mit-danalytix-ai
Webseite: danalytixai.com
Unsere Mission ist es, Unternehmen und Einzelpersonen mit hochmodernen Lösungen in den Bereichen maschinelles Lernen, künstliche Intelligenz und Datenwissenschaft zu unterstützen. Egal, ob Sie hier sind, um zu lernen, zu erkunden oder bei KI-gesteuerten Technologien an der Spitze zu bleiben, Sie sind hier richtig.
Von umsetzbaren Erkenntnissen bis hin zu fortschrittlichen KI-Implementierungen decken wir alles ab - wir vereinfachen komplexe Konzepte und zeigen, wie KI Branchen verändern kann.
Wenn Sie unsere Inhalte wertvoll finden, vergessen Sie nicht, sich anzumelden und auf die Schaltfläche „Gefällt mir“ zu klicken. Teilen Sie uns gerne Ihre Gedanken und Fragen in den Kommentaren mit - wir freuen uns, von Ihnen zu hören!
Ihr danalytix AI-Team
Termin buchen: calendly.com/danalytixai/erstgesprach-meeting-mit-danalytix-ai
Webseite: danalytixai.com
Closed-Source vs. Open-Source AI
🚀 **Closed-Source oder Open-Source AI?** Welche KI-Modelle sind die beste Wahl für dein Projekt? In diesem Video vergleichen wir **OpenAI** und **DeepSeek**, ihre Stärken, Schwächen und die Einsatzmöglichkeiten. 🤖💡
Wir besprechen:
✅ **Vor- und Nachteile von Closed-Source & Open-Source KI**
✅ **Performance, Kosten & Datenschutz**
✅ **Welche Modelle für Unternehmen oder Entwickler sinnvoll sind**
🔍 **Welche AI nutzt du lieber? Schreib es in die Kommentare!**
📢 **Abonniere den Kanal für mehr KI-Vergleiche & News!**
Termin buchen 🔍: calendly.com/danalytixai/erstgesprach-meeting-mit-danalytix-ai
Mehr zu dem Thema auf unserer Webseite: danalytixai.com
Wir besprechen:
✅ **Vor- und Nachteile von Closed-Source & Open-Source KI**
✅ **Performance, Kosten & Datenschutz**
✅ **Welche Modelle für Unternehmen oder Entwickler sinnvoll sind**
🔍 **Welche AI nutzt du lieber? Schreib es in die Kommentare!**
📢 **Abonniere den Kanal für mehr KI-Vergleiche & News!**
Termin buchen 🔍: calendly.com/danalytixai/erstgesprach-meeting-mit-danalytix-ai
Mehr zu dem Thema auf unserer Webseite: danalytixai.com
Просмотров: 12
Видео
KI-Agenten im Unternehmen: Automatisierung leicht gemacht
Просмотров 1516 часов назад
Herzlich willkommen zu unserem heutigen Video! Nur heute zeige ich euch die Vielfalt von KI-Agenten und ihre beeindruckenden Einsatzmöglichkeiten für Unternehmen. Von der Automatisierung täglicher Aufgaben bis hin zur Optimierung von Arbeitsprozessen - KI kann euren Arbeitsalltag revolutionieren. Verschafft euch einen Überblick, wie KI-Agenten Termine verwalten, Anrufe automatisiert entgegenneh...
Effizienter Empfang: KI-Sprachassistenten im Einsatz
Просмотров 2016 часов назад
Herzlich willkommen zu unserem heutigen Video! Ich freue mich, euch "Lena" vorzustellen - einen KI-Sprachassistenten, der euren Arbeitsalltag revolutionieren kann. Stellt euch vor, eingehende Anrufe werden automatisch entgegengenommen, Termine effizient verwaltet und euer Empfang spürbar entlastet. KI-Agenten wie "Lena" sind hervorragend geeignet, um tägliche Aufgaben zu automatisieren und euch...
Check out my new Course: AI: Data Science, ML, GenAI in Python + ChatGPT 👍 🔥
Просмотров 476 месяцев назад
Check out the Udemy course: www.udemy.com/course/ai-data-science-ml-genai-in-python-chatgpt/?couponCode=ST9MT71624
ChatGPT Beta Playground 👍💪 Superb
Просмотров 1202 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain #openai Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about writing Python code to use the ChatGPT from OpenAI. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data Science. So if ...
ChatGPT Python API 👍💪 Amazing
Просмотров 8972 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #openai Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about writing Python code to use the ChatGPT API from OpenAI. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data Science. So if you are ...
ChatGPT: Write Python code | OpenAI 👍💪 Wow!
Просмотров 9672 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #openai Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about writing Python code with ChatGPT from OpenAI. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data Science. So if you are interested...
Create Dashboards with Dash in Python
Просмотров 4652 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about creating Dashboards in Dash with Python. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data Science. So if you are interested ...
Data Prep with GUIs & Widgets for Jupyter Notebook | Python
Просмотров 5462 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about Stable Diffusion and how to generate an image like an artist with Python. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data S...
Stable Diffusion generate amazing images from text or image | Python
Просмотров 7892 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about Stable Diffusion and how to generate an image like an artist with Python. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data S...
Stable Diffusion generate an image like an artist | Python
Просмотров 1462 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about Stable Diffusion and how to generate an image like an artist with Python. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data S...
YOLO v7 Object Detection | Python
Просмотров 1772 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about YOLO v7 and who you can detect object in a picture with Python. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data Science. So...
YOLO v5 Object Detection | Python
Просмотров 1412 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about YOLO v5 and who you can detect object in a picture with Python. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data Science. So...
Auto ARIMA and ARIMAX Time Series prediction + forecast | Python
Просмотров 5 тыс.2 года назад
#deeplearning #machinelearning #python #deepreinforcementlearning #blockchain Please hit the Subscribe and Like button to support my channel 🙏👌👍 Today i will talk about AutoARIMA an how to predict and forecast for Time Series data. Hi and welcome to the ML, DL and Data Science channel. My mission is to teach and learn more about ML, DL, Mathematics, Artificial Intelligence and Data Science. So ...
XGBoost vs. ARIMA Anomaly Detection and Time Series data prediction | Python
Просмотров 3,2 тыс.2 года назад
XGBoost vs. ARIMA Anomaly Detection and Time Series data prediction | Python
Neural Prophet Anomaly Detection Predictive Maintenance | Python
Просмотров 1,9 тыс.2 года назад
Neural Prophet Anomaly Detection Predictive Maintenance | Python
Neural Prophet Bitcoin Prediction+Forecast in Python
Просмотров 2,3 тыс.2 года назад
Neural Prophet Bitcoin Prediction Forecast in Python
Send a transaction to the Ethereum Blockchain in Python using Web3 and Ganache
Просмотров 1,5 тыс.3 года назад
Send a transaction to the Ethereum Blockchain in Python using Web3 and Ganache
Asynchronous Advantage Actor-Critic Agent (A3C) Reinforcement Learning in Python with TF | OpenAIGym
Просмотров 2,1 тыс.3 года назад
Asynchronous Advantage Actor-Critic Agent (A3C) Reinforcement Learning in Python with TF | OpenAIGym
Advantage Actor Critic (A2C) Reinforcement Learning in Python with TF | OpenAIGym
Просмотров 5 тыс.3 года назад
Advantage Actor Critic (A2C) Reinforcement Learning in Python with TF | OpenAIGym
Deep Deterministic Policy Gradient | DDPG Actor-Critic in Python
Просмотров 2,4 тыс.3 года назад
Deep Deterministic Policy Gradient | DDPG Actor-Critic in Python
Deep Reinforcement Learning Dueling DQN in Python | TF and Keras | OpenAIGym
Просмотров 8793 года назад
Deep Reinforcement Learning Dueling DQN in Python | TF and Keras | OpenAIGym
Deep Reinforcement Learning Double DQN in Python | Keras | OpenAI Gym
Просмотров 1,3 тыс.3 года назад
Deep Reinforcement Learning Double DQN in Python | Keras | OpenAI Gym
Deep Reinforcement Learning DQN OpenAI Gym | Python [Deutsch]
Просмотров 2953 года назад
Deep Reinforcement Learning DQN OpenAI Gym | Python [Deutsch]
Deep Reinforcement Learning DQN OpenAI Gym | Python
Просмотров 6093 года назад
Deep Reinforcement Learning DQN OpenAI Gym | Python
CNN Image Classification Cifar Dataset (Python)
Просмотров 1133 года назад
CNN Image Classification Cifar Dataset (Python)
CNN Bilder-Klassifizierung Cifar Dataset (Python) | Deutsch
Просмотров 983 года назад
CNN Bilder-Klassifizierung Cifar Dataset (Python) | Deutsch
Does this model work for "long term" predictions? For example, we are training with 2000 data points aprox. Can we predict the next 100 for example? Without using the real ones, which will adjust the predictions
Well done!
Hello...Can you provide an example of how to apply DQNs to the Taxi-V3 environment? I realize that such a small grid would not require a DQN, however I believe it should still be possible. Any assistance would be greatly appreciated!
can i get feature importance like in "fbprophet : regressor_coefficients(model)" in neural frophet
How is it possible that timestep is 30 and the LSTM layer is 64. Shouldn't it be less than timestep to actually encode it?
Hello, May I ask, if I want to predict sample by sample based on the previous state of the output and one exogenous input is that possible to do with ARIMAX or SARIMAX, if yes how can I train them to do so.
Hi, thanks for code about NeuralProphet.It's really good, than i see before.But it gives only one day next predict.Can we make it more days.
One can try also the LSTM model but then create the data sequences themselves. One can get rid of the outliers or the anomalies use the quantile method which squeezes the data points at the tail of distribution to lie within the range of data (standard deviation). One can then check the outliers from the boxplot.
Hi, should check the data stationarity first through adfuller test, then use the differencing to find parameter (d) and ACF and PACF for (p,q). one should use the holdout method to create train and test set, then validate the model against the test data. if the prediction agrees with the test set within the confidence interval (95%), then one can extrapolate to one month for example and see the predictions. Also, use different metrics to validate your model (mae, mse, corr, etc).
pretty handy and useful tools, especially the last part which integrates data customization with code simultaneously. For visualization I prefer Matplotlib, Seaborn and Plotly
Hi, one can plot the auto-correlation and partial-correlation to extract the parameters required for the ARIMA model (p,d,q). You can also use Grid-Search to find the optimal parameters for your score.
"promo sm" 😠
There is a fundamental issue in this code. Autoencoder output is (30,1) while the y train is just one value ( the 31st day closing value for every 30 days ). The autoencoder should not be trained with X_train, y_train. It should be X_train, X_train as AE tries to reconstruct the input, not any forecasting. Here you have mixed both.
In case my signal has N dimensions (86 in my case) instead of 1 (like in the video), how do I compute the MAE?
You make the output 86 dimensional and take the MAE of the 86 dimentional vector and the true vector. It will calculate the mean of the difference of the 86 numbers in the 2 vectors
please do a tutorial of this with google collab. trying to do this in google collab. am having trouble
Firstly thanks. My question is that when input is 30*1 means 30 then how can be output 64 while in autoencoder we compress data then decode for example 30 to 15 to 10 then decode
Hi, I want to implement your code in my env, but not found We could talk, if you know how to fix my mistake? Thanks you.
Helping
what variables/model did u use to predict the closing price?
Nice.
While pip installing the neural prophet I'm getting errors
hello how are u where I can find this code history = model.fit(x_train, y_train, epochs-epochs, batch_size-batch_size, validation_split=0.1, callbacks = [EarlyStopping(monitor = 'val_loss', patience=3 ,???????
You can find the python code and the datasets here: github.com/danalytixx/Deep-Learning/blob/master/DL/Multi_Class_Text_Classification_LSTM_Consumer_complaints.ipynb
@@Danalytix thats the problemn in ur git hub this code is upto patience=3 after that its not vissible or atleast share us the google collab sheet
I like it better than Chat GPT. Wish it was more phone friendly.
Thank you, when I run this from my PyCharm the Chrome Browser is being opened and the conversation is run on the browser. What am I doing wrong?
I tried the example from colab in the Browser. So i can try the same in pycharm and let you know. Could you try the example in colab or jupyter first?
This method is not working :(
What exactly is not working?
Where is the code exactly? Thanks!
github.com/danalytixx/Deep-Learning/blob/master/DL/Multi_Class_Text_Classification_LSTM_Consumer_complaints.ipynb
Thanks for the video!
Sehr Interessant
Sehr gut, so etwas habe ich lange gesucht und endlich gefunden. Danke!!
Super
I will include the YOLO model in my outdoor cam to spy the neighborhood
Nice :)
An interesting topic
It seems that only one dataframe was added, not 365, in the future prediction part code. Isn't 365 length inferred by adding n_forecast=365 in the model setting part of execution box 26?
n_forecast=365 means to create a number of forecasts, which can also look in the future. now there is only one forecast. but with this number you could also look in the future. the part with : " future = m.make_future_dataframe(df, periods=365, n_historic_predictions=True) " -> makes a forecast for periods=365, which means one year ahead.
but df has 1827 rows, and forecast has 1828 rows with previous dates (df's 1827 rows)
@@sonmj0117 exactly, thanks for this point
how to show the actual result and prediction result ?
To to the prediction function, which will write the result in a variable. This can be used for further plots
please do SAC too
Part 2
Sorry, but it looks like overfitting. Model result is very similar to last price:(
As mentioned the hyperparameters are there to be changed and optimized. The Model can always trained in a better way
I have a question about the Xgboost algorithm. The question is how parallelization works in the Xgboost algorithm and explain me with an example.
Parallelization - The process of sequential tree building is done using the parallelized implementation in the XGBoost algorithm. This is made possible due to the outer and inner loops that are interchangeable. The outer loop lists the leaf nodes of a tree, while the inner loop will calculate the features
@@Danalytix thank you
Cool!
good
As always interesting:)
Thank you so much, your videos are really good and easy to understand 👍, please if have enough time try to cover the custom environments, it would be very helpful 👍🙏
sure i will , thanks :)
Interessant!
Sehr gutes Video
it will be more useful if it was tweet analysis
sure, thanks for the advice :)
Wheres' the csv file used in the project?
de.finance.yahoo.com/quote/BTC-EUR/history?p=BTC-EUR
Interesting topic:)
Glad you liked it
Can you share your code? URL? Thanks
maybe you can find that on github
here you can find it: github.com/danalytixx/Machine-Learning/tree/master/ML ;)
@@Danalytix Thank you very much and merry Christmas to you.
Nice