- Видео 63
- Просмотров 50 613
Robot Learning Freiburg
Германия
Добавлен 24 дек 2019
Official channel of the Robot Learning Group at the University of Freiburg, Germany.
Subscribe to our channel to get the latest news about our research and lectures.
Subscribe to our channel to get the latest news about our research and lectures.
[CoRL 2024] Learning Robotic Manipulation Policies from Point Clouds with Conditional Flow Matching
Eugenio Chisari, Nick Heppert, Max Argus, Tim Welschehold, Thomas Brox, Abhinav Valada
"Learning Robotic Manipulation Policies from Point Clouds with Conditional Flow Matching"
CoRL 2024
Project page: pointflowmatch.cs.uni-freiburg.de/
"Learning Robotic Manipulation Policies from Point Clouds with Conditional Flow Matching"
CoRL 2024
Project page: pointflowmatch.cs.uni-freiburg.de/
Просмотров: 260
Видео
CenterGrasp: Implicit Representation for Shape Reconstruction and 6-DoF Grasp Estimation [RA-L 2024]
Просмотров 28821 день назад
"CenterGrasp: Object-Aware Implicit Representation Learning for Simultaneous Shape Reconstruction and 6-DoF Grasp Estimation" Eugenio Chisari, Nick Heppert, Tim Welschehold, Wolfram Burgard, Abhinav Valada RA-L 2024 Website: centergrasp.cs.uni-freiburg.de/ Arxiv: arxiv.org/abs/2312.08240 Code: github.com/robot-learning-freiburg/CenterGrasp
Zero-Cost Whole-Body Teleoperation for Mobile Manipulation
Просмотров 43428 дней назад
Daniel Honerkamp*, Harsh Mahesheka*, Jan Ole von Hartz, Tim Welschehold and Abhinav Valada Zero-Cost Whole-Body Teleoperation for Mobile Manipulation ArXiv Preprint Paper: arxiv.org/pdf/2409.15095.pdf Code & Project: moma-teleop.cs.uni-freiburg.de/
AmodalSynthDrive: A Synthetic Amodal Perception Dataset For Autonomous Driving
Просмотров 65Месяц назад
Ahmed Rida Sekkat*, Rohit Mohan*, Oliver Sawade, Elmar Matthes, Abhinav Valada AmodalSynthDrive: A Synthetic Amodal Perception Dataset For Autonomous Driving Project Webpage: amodalsynthdrive.cs.uni-freiburg.de/ Paper: arxiv.org/abs/2309.06547 Music: pixabay.com/music/beats-relaxed-vlog-night-street-131746
PseudoTouch: Efficiently Imaging the Surface Feel of Objects for Robotic Manipulation. - 1min Teaser
Просмотров 77Месяц назад
Humans seemingly incorporate potential touch signals in their perception. Our goal is to equip robots with a similar capability, which we term PseudoTouch. PseudoTouch aims to predict the expected touch signal based on a visual patch representing the touched area. We frame this problem as the task of learning a low-dimensional visual-tactile embedding, wherein we encode a depth patch from which...
DITTO: Demonstration Imitation by Trajectory Transformation - 1min Teaser
Просмотров 207Месяц назад
Teaching robots new skills quickly and conveniently is crucial for the broader adoption of robotic systems. In this work, we address the problem of one-shot imitation from a single human demonstration, given by an RGB-D video recording. We propose a two-stage process. In the first stage we extract the demonstration trajectory offline. This entails segmenting manipulated objects and determining ...
LetsMap: Unsupervised Representation Learning for Semantic BEV Mapping
Просмотров 156Месяц назад
Nikhil Gosala, Kürsat Petek, B Ravi Kiran, Senthil Yogamani, Paulo L. J. Drews-Jr, Wolfram Burgard, Abhinav Valada, LetsMap: Unsupervised Representation Learning for Semantic BEV Mapping European Conference on Computer Vision (ECCV), 2024. Paper: arxiv.org/abs/2405.18852 Code & Project: letsmap.cs.uni-freiburg.de
HOV-SG: Hierarchical Open-Vocabulary 3D Scene Graphs for Language-Grounded Robot Navigation (RSS'24)
Просмотров 4163 месяца назад
Abdelrhman Werby*, Chenguang Huang*, Martin Buechner*, Abhinav Valada, Wolfram Burgard Hierarchical Open-Vocabulary 3D Scene Graphs for Language-Grounded Robot Navigation Robotics: Science and Systems, 2024, Delft, Netherlands Paper: arxiv.org/pdf/2403.17846 Code & Project: hovsg.github.io/ Chapters 0:00 Intro 0:08 Motivation for HOV-SG 0:46 HOV-SG Pipeline 3:27 Language-Grounded Navigation wit...
MoMa-LLM: Language-Grounded Dynamic Scene Graphs for Interactive Object Search w Mobile Manipulation
Просмотров 1673 месяца назад
Daniel Honerkamp*, Martin Buechner*, Fabien Despinoy, Tim Welschehold, Abhinav Valada Language-Grounded Dynamic Scene Graphs for Interactive Object Search w Mobile Manipulation IEEE Robotics and Automation Letters (RA-L), 2024. Paper: arxiv.org/abs/2403.08605 Code & Project: moma-llm.cs.uni-freiburg.de/ Chapters 0:00 Intro 0:10 Interactive Object Search Task 0:58 MoMa-LLM Method 1:41 Reasoning ...
INoD: Injected Noise Discriminator for Self-Supervised Learning in Agricultural Fields
Просмотров 1043 месяца назад
INoD: Injected Noise Discriminator for Self-Supervised Learning in Agricultural Fields by Julia Hindel, Nikhil Gosala, Kevin Bregler, and Abhinav Valada. Paper: ieeexplore.ieee.org/document/10202201 Code and Dataset: inod.cs.uni-freiburg.de Music by Bensound.com, License code: WTHYEH7WJFBCAQRH.
Taxonomy-Aware Continual Semantic Segmentation in Hyperbolic Spaces for Open-World Perception
Просмотров 1383 месяца назад
Taxonomy-Aware Continual Semantic Segmentation in Hyperbolic Spaces for Open-World Perception by Julia Hindel, Daniele Cattaneo and Abhinav Valada. Paper: arxiv.org/abs/2407.18145 Code & Manual: topics.cs.uni-freiburg.de Visualisation: vecteezy.com Music by Bensound.com, License code: OAFQ8PL0FMINUBNA.
MOMA.v2: 2nd Workshop on Mobile Manipulation and Embodied Intelligence - ICRA 2024
Просмотров 3393 месяца назад
Website: mobile-manipulation.net/events/moma2024/ ► Full Workshop Timeline ◄ Due to technical issues, unfortunately there is no recording available for the opening remarks and Yoshihiro Okumatsu's talk. We are very sorry. ▸ Paper Spotlights ◂ ruclips.net/video/bEVx_E3iUyk/видео.html - Scaling Robot Policy Learning via Zero-Shot Labeling with Foundation Models - MobileAfford: Mobile Robotic Mani...
The Art of Imitation: Learning Long-Horizon Manipulation Tasks from Few Demonstrations
Просмотров 3783 месяца назад
Jan Ole von Hartz, Tim Welschehold, Abhinav Valada, and Joschka Boedecker The Art of Imitation: Learning Long-Horizon Manipulation Tasks from Few Demonstrations Paper: arxiv.org/pdf/2407.13432 Code & Project: tapas-gmm.cs.uni-freiburg.de/ Chapters 0:00 Intro and Method 1:13 Live Demo 1:35 Tasks 1:55 Demo Collection 2:07 Zero-Shot Generalization 2:52 Zero-Shot Skill Reuse 3:24 Baseline Compariso...
RoboNerF: 1st Workshop On Neural Fields In Robotics - ICRA 2024
Просмотров 1,4 тыс.3 месяца назад
Website: robonerf.github.io/2024/ ► Full Workshop Timeline ◄ ▸ Introduction by Zubair and Nick ◂ ruclips.net/video/jyEZtbXs3fg/видео.html ▸ Jeannette Bohg ◂ ruclips.net/video/jyEZtbXs3fg/видео.html Assistant Professor Stanford ▸ Yen-Chen Lin ◂ ruclips.net/video/jyEZtbXs3fg/видео.html Research Sceintist Nvidia ▸ Xiaolong Wang ◂ ruclips.net/video/jyEZtbXs3fg/видео.html Assistant Professor Univers...
MoMa-LLM: Language-Grounded Dynamic Scene Graphs for Interactive Object Search w Mobile Manipulation
Просмотров 2064 месяца назад
Language-Grounded Dynamic Scene Graphs for Interactive Object Search with Mobile Manipulation Daniel Honerkamp*1, Martin Büchner*1, Fabian Despinoy^2, Tim Welschehold^1 , and Abhinav Valada^1 Paper: arxiv.org/abs/2403.08605 Project website: moma-llm.cs.uni-freiburg.de/ 1: Department of Computer Science, University of Freiburg, Germany. 2: Toyota Motor Europe (TME).
PASTEL: A Good Foundation is Worth Many Labels -- Label-Efficient Panoptic Segmentation
Просмотров 1015 месяцев назад
PASTEL: A Good Foundation is Worth Many Labels Label-Efficient Panoptic Segmentation
MDPCalib: Automatic Target-Less Camera-LiDAR Calibration From Motion and Deep Point Correspondences
Просмотров 3586 месяцев назад
MDPCalib: Automatic Target-Less Camera-LiDAR Calibration From Motion and Deep Point Correspondences
BOpt-GMM - Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation
Просмотров 1157 месяцев назад
BOpt-GMM - Bayesian Optimization for Sample-Efficient Policy Improvement in Robotic Manipulation
BEVCar: Camera-Radar Fusion for BEV Map and Object Segmentation
Просмотров 5247 месяцев назад
BEVCar: Camera-Radar Fusion for BEV Map and Object Segmentation
Merry Christmas from the Robot Learning Lab - 2023
Просмотров 49410 месяцев назад
Merry Christmas from the Robot Learning Lab - 2023
Panoptic Out-of-Distribution Segmentation
Просмотров 140Год назад
Panoptic Out-of-Distribution Segmentation
FreiDOG ft. Akaishi Daiko Freiburg @ 10th anniversary of kite-mentoring
Просмотров 1,1 тыс.Год назад
FreiDOG ft. Akaishi Daiko Freiburg @ 10th anniversary of kite-mentoring
CURB-SG: Collaborative Dynamic 3D Scene Graphs for Automated Driving
Просмотров 427Год назад
CURB-SG: Collaborative Dynamic 3D Scene Graphs for Automated Driving
SPINO: Few-Shot Panoptic Segmentation With Foundation Models
Просмотров 300Год назад
SPINO: Few-Shot Panoptic Segmentation With Foundation Models
The Treachery of Images: Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation
Просмотров 114Год назад
The Treachery of Images: Bayesian Scene Keypoints for Deep Policy Learning in Robotic Manipulation
Efficient Learning of Urban Driving Policies Using Bird's-Eye-View State Representations (ITSC 2023)
Просмотров 96Год назад
Efficient Learning of Urban Driving Policies Using Bird's-Eye-View State Representations (ITSC 2023)
RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps
Просмотров 155Год назад
RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps
Syn-Mediverse: A Multimodal Synthetic Dataset for Scene Understanding of Healthcare Facilities
Просмотров 106Год назад
Syn-Mediverse: A Multimodal Synthetic Dataset for Scene Understanding of Healthcare Facilities
how to visulization based on ur source code in github. let me know the setup by step plz
This is semantic segmentation
No :) Notice that object instances are illustrated with a white boundary
@@robotlearningfreiburg Thanks for clarifying, I am just getting into segmentation and I could not see the differences between instances. Thank you :)
Ich merke gerade dass ihr aus Freiburg seit. Schoenen Tag noch.
🏃 P R O M O S M
*promo sm*
Great job guys!
Thank you
Your paper wonderfully explains all the components and it is really helpful.
따봉 누르고 갑니다
와마
Cool. Can I contact u?
Interested. Can i contact you
This is fantastic
This is very impressive