BazAI
BazAI
  • Видео 38
  • Просмотров 3 825
#mainframes #modernization with #XMainframe #code #llm #aws #gcp #chatgpt
Architecture Overview
XMainframe's architecture consists of the following components:
Data Collection Pipeline: A scalable pipeline for collecting and processing large amounts of mainframe data, including COBOL code, system logs, and documentation.
Preprocessing Module: A module responsible for preprocessing the collected data, including tokenization, syntax analysis, and data normalization.
XMainframe Model: A state-of-the-art large language model (LLM) specifically designed to understand and interact with legacy codebases, including COBOL.
Inference Engine: A high-performance engine for running XMainframe's model on various tasks, including code completion, bug detection, and question answer...
Просмотров: 33

Видео

Mainframe Modernization Made Easy: A Step-by-Step Guide
Просмотров 912 часов назад
Benefits and best practices of mainframe modernization, including replatforming, refactoring, and rearchitecting. Discover how to unlock the full potential of your mainframe assets and transform your business for the digital age.
what is LCM ? Large Concept Models : Beyond Token-Level Processing
Просмотров 8614 дней назад
Large Concept Model (LCM) Description: arxiv.org/pdf/2412.08821 Definition: LCMs are AI models capturing sentence-level semantics, enabling language understanding and generation. Key Features: Sentence Representation Space SONAR Embeddings (1024-dimensional float vectors) Semi-Supervised Training (labeled data for next concept prediction) Language-Agnostic Conceptualization Architecture: Transf...
DevSecOps Challenges
Просмотров 66Месяц назад
2103.08266v2.pdf
Power of Agentic RAG
Просмотров 162Месяц назад
Agentic RAG describes an AI agent-based implementation of RAG. Specifically, it incorporates AI agents into the RAG pipeline to orchestrate its components and perform additional actions beyond simple information retrieval and generation to overcome the limitations of the non-agentic pipeline.
Agent as a Judge Revolutionizing AI
Просмотров 69Месяц назад
Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems. This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
DevSecOps
Просмотров 10Месяц назад
DevSecOps
DevSecOps: Integrating Security into Software Development
Просмотров 622 месяца назад
DevSecOps combines development, security, and operations to minimize vulnerability risks. It emphasizes collaboration, automation, and clear processes, ensuring that security is built-in from the start.
#buildwithAI #AI#genAI #cottonfarming #agriculture #technology #innovation #India
Просмотров 1074 месяца назад
Cotton Detection: A Game-Changer for Indian Farmers
Lamini Memory Tuning: 95% LLM Accuracy, 10x Fewer Hallucinations
Просмотров 1505 месяцев назад
Lamini Memory Tuning is a new way to embed facts into LLMs that improves factual accuracy and reduces hallucinations to previously unachievable levels - for one Fortune 500 customer, Lamini Memory Tuning led to 95% accuracy compared to 50% with other approaches. Hallucinations were reduced from 50% to 5%.
#spanner #graphdb #googlecloud #cloudspanner #database
Просмотров 2735 месяцев назад
Google Cloud Spanner, a fully managed, globally distributed database service, and its integration with Graph DB capabilities. We'll dive into how Spanner can handle both relational and graph data, making it a versatile solution for a wide range of applications.
#AIML #RAG #EnterpriseAI #BusinessSolutions #ArtificialIntelligence #TechInnovation #FutureOfWork
Просмотров 335 месяцев назад
Transforming Enterprises with Retrieval-Augmented Generation (RAG)
Build Tech Support Chatbots: Level Up Your Customer Service with AI
Просмотров 255 месяцев назад
RAG is transforming how enterprises access and utilize information. To learn more about RAG and its potential, check out my previous video on the topic. It's packed with insights and examples!
#UIDesign #AIDesign #Visily #Wireframing #Prototyping #DesignTools #AI #Tech #DesignSoftware
Просмотров 755 месяцев назад
#UIDesign #AIDesign #Visily #Wireframing #Prototyping #DesignTools #AI #Tech #DesignSoftware
Prototype a ToDo App UI in Under 5 Minutes with Code Llama
Просмотров 995 месяцев назад
Prototype a ToDo App UI in Under 5 Minutes with Code Llama
Build a Memory Chatbot in 1 Minute with Langflow
Просмотров 2765 месяцев назад
Build a Memory Chatbot in 1 Minute with Langflow
Mixture-of-Agents ( MoA)
Просмотров 275 месяцев назад
Mixture-of-Agents ( MoA)
Together AI- Mixture-of-Agents ( MoA) Enhances Large Language Model Capabilities
Просмотров 655 месяцев назад
Together AI- Mixture-of-Agents ( MoA) Enhances Large Language Model Capabilities
Building a Real-Time GenAI-Powered Food Delivery App with Redpanda
Просмотров 336 месяцев назад
Building a Real-Time GenAI-Powered Food Delivery App with Redpanda
Meet Meta's Llama 3.1, the world's largest and most capable open foundation model
Просмотров 566 месяцев назад
Meet Meta's Llama 3.1, the world's largest and most capable open foundation model
Gemini Function Calling Enterprise & Business Success
Просмотров 766 месяцев назад
Gemini Function Calling Enterprise & Business Success
19 July 2024
Просмотров 366 месяцев назад
19 July 2024
Supercharge Your Retail Search & Sales with Google Search for Retail
Просмотров 426 месяцев назад
Supercharge Your Retail Search & Sales with Google Search for Retail
BuildwithAI - Terraform with AI Assistance in Under 5 Minutes
Просмотров 996 месяцев назад
BuildwithAI - Terraform with AI Assistance in Under 5 Minutes
Unlocking the Power of Speech-to-Text with AssemblyAI
Просмотров 436 месяцев назад
Unlocking the Power of Speech-to-Text with AssemblyAI
Google Gemini Flash- A marketing campaign from a product sketch of a Jet Backpack
Просмотров 1106 месяцев назад
Google Gemini Flash- A marketing campaign from a product sketch of a Jet Backpack
AI Prompting : Zero-Shot, One-Shot, Few-Shot
Просмотров 896 месяцев назад
AI Prompting : Zero-Shot, One-Shot, Few-Shot
RetailScanAI and Intel OneAPI
Просмотров 27Год назад
RetailScanAI and Intel OneAPI
Jaggery Tea making.. Mr2Cool
Просмотров 307 лет назад
Jaggery Tea making.. Mr2Cool
Pothamedu View point
Просмотров 457 лет назад
Pothamedu View point

Комментарии

  • @buanadaruokta8766
    @buanadaruokta8766 Месяц назад

    can i make the chat memory into vector database?

  • @giteshpal405
    @giteshpal405 2 месяца назад

    @BazAI Can you share this pdf ?

  • @ranjujoshi6851
    @ranjujoshi6851 5 месяцев назад

    Good one Baz ☺️

  • @yossnour
    @yossnour 5 месяцев назад

    Hello, Can you please share the colab link?

  • @abisheksubramanian8069
    @abisheksubramanian8069 5 месяцев назад

    Very interesting 🎉

  • @weimeilin
    @weimeilin 6 месяцев назад

    Your Kafka session was not time out, it's because you pasted the transform magic into the wrong folder, it should be under super-panda folder. So if you look at your model-data topic, the data was not transformed.

  • @abisheksubramanian8069
    @abisheksubramanian8069 6 месяцев назад

    Very informative 👏

    • @Mr2coool
      @Mr2coool 6 месяцев назад

      @@abisheksubramanian8069 Thank you so much Bro