Machine Learning with Pytorch
Machine Learning with Pytorch
  • Видео 37
  • Просмотров 126 558
Markov Chains
📌 Understanding Markov Chains in Reinforcement Learning
Welcome back to the Reinforcement Learning Series! 🚀 This week, we’re diving into Markov Chains, a fundamental concept for modelling environments in RL.
🔹 What is a Markov Chain?
🔹 The Markov Property & Why It Matters
🔹 Sample Episode Walkthrough
🔹 Bridging to Markov Reward Processes
By the end of this video, you’ll understand how state transitions work and why Markov Chains make RL more efficient. Stay tuned for the next episode, where we introduce Markov Reward Processes (MRPs)!
#ReinforcementLearning #MarkovChains #MachineLearning #RL #DataScience
Просмотров: 44

Видео

Reinforcement Learning: The Decision Learning Problem
Просмотров 71День назад
In this introductory video, we explore the Decision Learning Problem, the foundation of Reinforcement Learning. Using a 1D cleaning robot, we start with states, actions, rewards, and terminal states. Real-world applications: Robotics, Operations Research, AI Next Up: 🔹 Markov Chains & MDPs 🔹 The Bellman Equation 📂 Jupyter Notebook: github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Expl...
Introduction
Просмотров 1222 месяца назад
Welcome to Part 1 of my Reinforcement Learning (RL) series! In this series, I’ll cover the foundational concepts of RL, from the Decision Learning Problem to key principles like Markov Processes, Dynamic Programming, and essential RL algorithms. My goal is to make these topics easy to follow with practical examples that bring each concept to life.
torch.nn.LayerNorm Explained
Просмотров 4972 месяца назад
This video explains how the LayerNorm works and also how PyTorch takes care of the dimension. Unlike BatchNorm that relies on statistics across batches, LayerNorm normalizes data features. Having a good understanding of the dimension really helps a lot in understanding the neural network. Jupyter Notebook : github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/torch.nn....
torch.nn.BatchNorm2d Explained
Просмотров 3882 месяца назад
This video explains how the Batch Norm 2d works and also how Pytorch takes care of the dimension. Having a good understanding of the dimension really helps a lot in understanding the neural network. Jupyter Notebook: github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/torch.nn.BatchNorm2d.ipynb Full Directory: github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules...
torch.distributions.poisson.Poisson - Poisson Distribution Guided Synthetic Data Generation
Просмотров 11710 месяцев назад
This video includes the use of how Poisson could be reveraged to inhance the quality of synthetic data. Pytorch Poisson- pytorch.org/docs/stable/distributions.html#poisson Sampling - stats.stackexchange.com/questions/551568/sampling-from-a-poisson-distribution-infinite-support Jupyter Notebook: github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/torch.distributions.po...
GPT: A Technical Training Unveiled #7 - Final Linear Layer and Softmax
Просмотров 111Год назад
Linear Layer: ruclips.net/video/QpyXyenmtTA/видео.html Notebook: github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/Mini Gpt Pretraining.ipynb Presentation:github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/Mini Gpt.pdf
GPT: A Technical Training Unveiled #6 - Block Two of Transform Decoder
Просмотров 67Год назад
This is the second block (layer 2) which repeats Masked Multihead Attention and the feedforward Layer Linear Layer: ruclips.net/video/QpyXyenmtTA/видео.html Layer Normalization: ruclips.net/video/G45TuC6zRf4/видео.html Notebook: github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/Mini Gpt Pretraining.ipynb Presentation:github.com/abdulsalam-bande/Pytorch-Neural-Networ...
GPT: A Technical Training Unveiled #5 - Feedforward, Add & Norm
Просмотров 85Год назад
After the attention outputs for each head are computed, they are concatenated and then passed through a feedforward network. The Add and Norm steps involve adding the original input to the output of the attention or feedforward networks (a form of residual connection) and then normalizing the result. This helps in stabilizing the activations and aids in training deeper models. Linear Layer: ruc...
GPT: A Technical Training Unveiled #4 - Masked Multihead Attention
Просмотров 161Год назад
Detailed exposition of the attention mechanism with an example of key, query, and value matrices in transformer neural networks. The Multihead Attention mechanism allows the model to focus on different parts of the input sequence when producing an output sequence. The mechanism works by producing multiple sets (or "heads") of key, query, and value projections, and then combining them. For our s...
GPT: A Technical Training Unveiled #3 - Embedding and Positional Encoding
Просмотров 186Год назад
Explanation of token embeddings and positional encodings in transformer models, showcasing their significance in AI training. Embeddings are a way of representing categorical data, like words or characters, as continuous vectors. So each character is embedded into a continuous vector space using an embedding layer. Positional encodings are added to give the model information about the relative ...
GPT: A Technical Training Unveiled #2 - Tokenization
Просмотров 107Год назад
A demonstration of the tokenization process, detailing the conversion of text to tokens using character sets in language models. Tokenization is the process of converting a sequence of characters into a sequence of tokens. For example, given a small text data, every unique character in this text is treated as a token, leading to a vocabulary of unique characters Wikipedia: en.wikipedia.org/wiki...
GPT: A Technical Training Unveiled #1 - Introduction
Просмотров 173Год назад
Andrej Karpathy Video: ruclips.net/video/kCc8FmEb1nY/видео.html Wikipedia: en.wikipedia.org/wiki/Generative_pre-trained_transformer Notebook: github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/Mini Gpt Pretraining.ipynb Presentation:github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained/blob/main/Mini Gpt.pdf
torch.nn.TransformerDecoderLayer - Part 4 - Multiple Linear Layers and Normalization
Просмотров 275Год назад
This video contains the explanation of Multiple Linear Layers of the torch.nn.TransformerDecoderLayer module. Jupyter Notebook : github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained.git Transformer Encoder Playlists: ruclips.net/video/oCWFyt2kWLg/видео.html&ab_channel=MachineLearningwithPytorch
torch.nn.TransformerDecoderLayer - Part 2 - Embedding, First Multi-Head attention and Normalization
Просмотров 395Год назад
This video contains the explanation of the first Multi-head attention of the torch.nn.TransformerDecoderLayer module. Jupyter Notebook : github.com/abdulsalam-bande/Pytorch-Neural-Network-Modules-Explained.git Transformer Encoder Playlists: ruclips.net/video/oCWFyt2kWLg/видео.html&ab_channel=MachineLearningwithPytorch
torch.nn.TransformerDecoderLayer - Part 3 -Multi-Head attention and Normalization
Просмотров 251Год назад
torch.nn.TransformerDecoderLayer - Part 3 -Multi-Head attention and Normalization
nn.TransformerDecoderLayer - Overview
Просмотров 947Год назад
nn.TransformerDecoderLayer - Overview
torch.nn.Embedding - How embedding weights are updated in Backpropagation
Просмотров 5 тыс.Год назад
torch.nn.Embedding - How embedding weights are updated in Backpropagation
Pytorch Backpropagation with Example 03 - Gradient Descent
Просмотров 2122 года назад
Pytorch Backpropagation with Example 03 - Gradient Descent
Pytorch Backpropagation With Example 02 - Backpropagation
Просмотров 1902 года назад
Pytorch Backpropagation With Example 02 - Backpropagation
Pytorch Backpropagation With Example 01 - Forward-propagation
Просмотров 3852 года назад
Pytorch Backpropagation With Example 01 - Forward-propagation
torch.nn.ConvTranspose2d Explained
Просмотров 9 тыс.2 года назад
torch.nn.ConvTranspose2d Explained
torch.nn.CosineSimilarity explained and announcement!
Просмотров 8532 года назад
torch.nn.CosineSimilarity explained and announcement!
torch.nn.TransformerEncoderLayer - Part 5 - Transformer Encoder Second Layer Normalization
Просмотров 7312 года назад
torch.nn.TransformerEncoderLayer - Part 5 - Transformer Encoder Second Layer Normalization
torch.nn.TransformerEncoderLayer - Part 4 - Transformer Encoder Fully Connected Layers
Просмотров 8652 года назад
torch.nn.TransformerEncoderLayer - Part 4 - Transformer Encoder Fully Connected Layers
torch.nn.TransformerEncoderLayer - Part 3 - Transformer Layer Normalization
Просмотров 1,5 тыс.2 года назад
torch.nn.TransformerEncoderLayer - Part 3 - Transformer Layer Normalization
torch.nn.TransformerEncoderLayer - Part 2 - Transformer Self Attention Layer
Просмотров 1,8 тыс.3 года назад
torch.nn.TransformerEncoderLayer - Part 2 - Transformer Self Attention Layer
torch.nn.TransformerEncoderLayer - Part 1 - Transformer Embedding and Position Encoding Layer
Просмотров 4,3 тыс.3 года назад
torch.nn.TransformerEncoderLayer - Part 1 - Transformer Embedding and Position Encoding Layer
torch.nn.TransformerEncoderLayer - Part 0 - Module Overview
Просмотров 3,2 тыс.3 года назад
torch.nn.TransformerEncoderLayer - Part 0 - Module Overview
Transformer Positional Embeddings With A Numerical Example.
Просмотров 22 тыс.3 года назад
Transformer Positional Embeddings With A Numerical Example.

Комментарии

  • @samc6368
    @samc6368 Месяц назад

    Typo in calculation at 5:06, as i=0 for first 2 items of sin and cos for "boy", you have as 1.

  • @sarahkhan3217
    @sarahkhan3217 Месяц назад

    The division by 2 relates to splitting the embedding dimensions for sine and cosine computations and is independent of the number of sentences or words.

  • @AlessandraBlasioli
    @AlessandraBlasioli Месяц назад

    this is amazing, thanks!!

  • @kushagrasharma6042
    @kushagrasharma6042 2 месяца назад

    First Multihead Attention is masked, and the second is normal multihead attention. I think you forgot to mention this is masked cause the decoder behaves as an autoencoder which sends the output back into the output. During training as we will need to mimic this behaviour of inference/testing in training , therefore attention is basically the attention with mask. Great videos overall!

  • @CrusadeVoyager
    @CrusadeVoyager 2 месяца назад

    hi, Thank u for starting RF , would u also provide code :) and examples.?

  • @SanthanalakshmiSM
    @SanthanalakshmiSM 2 месяца назад

    wonderful explanation. Keep doing.

  • @Arthur12137
    @Arthur12137 2 месяца назад

    best video, ever

  • @shrabanKC
    @shrabanKC 2 месяца назад

    Thank you for the explanation

  • @lockdown-vq5bz
    @lockdown-vq5bz 3 месяца назад

    Hi is this the cpu version? If so, where do we get the gpu version and could you just explain it in a bit?? Thanks

  • @rahatkibriabhuiyan2426
    @rahatkibriabhuiyan2426 3 месяца назад

    Here I have a observation, in the input data number of features are 3 and we have number of training samples 2. That's why the input_data matrix's shape is 2 by 3. And also the number of the neurons in input MLP layer = number of features of the input data i.e. 3. Plz make me correct, if my speculation is wrong. And thanks for the interactive video.

  • @unclemusclez
    @unclemusclez 4 месяца назад

    i jut found your channel and i can not wait to watch all of your videos. this is awesome thanks

  • @Adhbutham
    @Adhbutham 5 месяцев назад

    Why is cosine of 0 = 0?? I think there is an error

  • @jefffang5691
    @jefffang5691 5 месяцев назад

    Thanks a lot! Definitely cleared up a lot of things

  • @marinamaher8211
    @marinamaher8211 6 месяцев назад

    Thanks for the details, keep going 👏

  • @shirleyyli128
    @shirleyyli128 6 месяцев назад

    goat

  • @ashishbehal5903
    @ashishbehal5903 7 месяцев назад

    Brother your videos are great! Very helpful thank you

  • @ketanmann4371
    @ketanmann4371 7 месяцев назад

    All videos are great. Thanks a lot. Can you start some series or videos on diffusion models specially class conditioning and latent diffusion models (or other score matching models) ?

    • @machinelearningwithpytorch
      @machinelearningwithpytorch 7 месяцев назад

      Thank you. My focus now is on reinforcement learning. I’m working on a very high quality content.

  • @VladislavVasilenko
    @VladislavVasilenko 7 месяцев назад

    Sorry, I don't understand you lesson. 1. Why activation layer to 3 neurons on second layer (each of them has three connections from previously) have matrix 3x2. 2. Why you disable neurons at 1col [2,3rows] and after disable on 2col [3row]. If you have p=0.5, I am assume you should disable two-three neurons on each step of training, leave only 1-2 neuron enabled.

  • @VladislavVasilenko
    @VladislavVasilenko 7 месяцев назад

    Thanks for details. I am learning Transformer Architecture, Attention mechanism and Math hidden under them. I am from Moscow / Russia.

  • @dw61w
    @dw61w 7 месяцев назад

    maybe a better microphone

  • @Yacktalkun
    @Yacktalkun 8 месяцев назад

    you bro you skip that when model do the test~~

  • @j.a.d.ranasinghe7241
    @j.a.d.ranasinghe7241 8 месяцев назад

    Good Explanation !

  • @alokkumarsingh4641
    @alokkumarsingh4641 8 месяцев назад

    but in fully connected layer a 1D vector is passed so the 3*2 matrix will be flattened out right? so how are we defining the shape of weights and bias it should be (6*1)

  • @kabirsharma44
    @kabirsharma44 8 месяцев назад

    Very nice

  • @SUDIPTODAS-r9l
    @SUDIPTODAS-r9l 9 месяцев назад

    Got rid of the jargon , straight to the point , great tutorial

  • @wilfredomartel7781
    @wilfredomartel7781 9 месяцев назад

    😊😊❤amazing tutorial man

  • @wishswiss
    @wishswiss 10 месяцев назад

    thanks!

  • @කැලණිකුප්පි
    @කැලණිකුප්පි 10 месяцев назад

    Love these hand writing style explanations ❤

  • @王天宁-y8y
    @王天宁-y8y 10 месяцев назад

    Thanks for the video! Really do me a big favor.

  • @thrivefoxxgaming1120
    @thrivefoxxgaming1120 10 месяцев назад

    Explanation is clear... great job.. but the audio is little bad

  • @mahendrans8678
    @mahendrans8678 11 месяцев назад

    can you explain tgt_key_padding_mask parameter in nn.TransformerDecoderLayer.

  • @LuizHenrique-qr3lt
    @LuizHenrique-qr3lt 11 месяцев назад

    Great explanation, do you have videos on layer norm, instance norm and group norm?

  • @atmismahir
    @atmismahir 11 месяцев назад

    thank you for the clear math. I still couldn't get how the word order is preserved though. Is there any visual representation or mathematical illustration of how the positions are preserved?

  • @PhilipBrownEsq
    @PhilipBrownEsq 11 месяцев назад

    this video started off well, but it would ahve been better if it showed the implied second line of python code, explicitly

  • @findritesh
    @findritesh 11 месяцев назад

    great job explaining this concept!

  • @mosesmaned2151
    @mosesmaned2151 Год назад

    your videos are game changing for sure thank you very much please you are a life saver

  • @wolfisraging
    @wolfisraging Год назад

    Most underrated channel ever

  • @liam15williams
    @liam15williams Год назад

    i don'r get why we divide two

  • @ahmedchaoukichami9345
    @ahmedchaoukichami9345 Год назад

    very good explaine thanks can you do vit transformers plz

  • @safiyabande7216
    @safiyabande7216 Год назад

    Great job on explaining. Love your content!

  • @aspalladan
    @aspalladan Год назад

    naji dadin video dinnan bansako kai bahause bane amma muryanka kaman na bahause ...Allah yakara basira

  • @mariamzomorodi2249
    @mariamzomorodi2249 Год назад

    Excellent! Thank you so much! The best explanation ever for embedding layer. We can find it anywhere else in the web!

  • @23232323rdurian
    @23232323rdurian Год назад

    Thank you! I've been trying to understand that math unsuccessfully for a long time.....seen lots of videos, but somehow yours explained best

  • @rafaelgp9072
    @rafaelgp9072 Год назад

    Very good videos, in my opinion The best i ve ever seen about The math perspective of transformers

  • @rafaelgp9072
    @rafaelgp9072 Год назад

    Amazing

  • @Wongyork
    @Wongyork Год назад

    May I ask what device you used to record this video?

  • @jazzvids
    @jazzvids Год назад

    Thank you! I didn't understand why the bias isn't of dimension 1 and this sorted it out for me

  • @sidhpandit5239
    @sidhpandit5239 Год назад

    Tysm :)

  • @GoogleAccount-kc6rt
    @GoogleAccount-kc6rt Год назад

    Very good man, Keep posting ☺️