- Видео 49
- Просмотров 13 190
Maxime υ
Добавлен 2 июн 2020
Quantum VS Classical Pendulum
Quantum VS Classical Pendulum
In this simulation, the classical pendulum (CP) is represented by the blue line, and the quantum pendulum (QP) is depicted by its probability density |ψ(θ)|² in black. The grey dotted line indicates its origin (e.g., where ψ(θ)=0). The upper left graph shows the angle of the CP and the mean angle of the QP. The grey area represents the uncertainty in the QP's position. The bottom left graph shows the same information in momentum space.
The first part of the video features an initial angle of 3π/4 (using a Gaussian packet for the QP). The second part is for π/6 (harmonic oscillator regime).
The CP dynamics (with no friction) are solved using a 4th-order Runge-Kut...
In this simulation, the classical pendulum (CP) is represented by the blue line, and the quantum pendulum (QP) is depicted by its probability density |ψ(θ)|² in black. The grey dotted line indicates its origin (e.g., where ψ(θ)=0). The upper left graph shows the angle of the CP and the mean angle of the QP. The grey area represents the uncertainty in the QP's position. The bottom left graph shows the same information in momentum space.
The first part of the video features an initial angle of 3π/4 (using a Gaussian packet for the QP). The second part is for π/6 (harmonic oscillator regime).
The CP dynamics (with no friction) are solved using a 4th-order Runge-Kut...
Просмотров: 642
Видео
Dynamic of a 2D Heisenberg Antiferromagnetic system with long range interactions
Просмотров 1085 месяцев назад
Dynamics of a 2D Heisenberg antiferromagnetic system with long-range interactions using a Monte Carlo algorithm. The upper graphic represents the Heisenberg spins, the bottom left shows the magnetization along the x and y axes of the sub-lattice (which is every other line), and the bottom right depicts the total energy over time. The critical temperature is approximately 1. The initial configur...
Dynamic of a 2D Heisenberg Antiferromagnetic system with varying temperature
Просмотров 165 месяцев назад
Dynamic of a 2D Heisenberg Antiferromagnetic system using Monte-Carlo algorithm. Initial configuration is random. One frame represents 200 Metropolis loops. Temperature varies over time. - Square lattice 15x10 - N = 150 (number of particles) - T varies from 5 to 0 - J = -1 (interaction energy with nearest neighbors) Simulation was coded in Python, using numpy and matplotlib libraires.
Dynamic of an Heisenberg system using Monte-Carlo algorithm
Просмотров 2925 месяцев назад
Dynamic of an Heisenberg system using Monte-Carlo algorithm. Initial configuration is random. Each pixel represents the spin along the z axis. One second represents 1333 Metropolis loops. - Square lattice 100x75 - N = 7500 (number of particles) - T = 0.1 (temperature) - J = 1 (interaction energy with nearest neighbors) -h = 0 (magnetic field) Simulation was coded in Python, using numpy and matp...
Dynamic of an Ising system using Monte-Carlo algorithm
Просмотров 326 месяцев назад
Dynamic of an Ising system using Monte-Carlo algorithm. Initial configuration is random. One second represents 1200 Metropolis loops. - Square lattice 200x200 - N = 40 000 (number of particles) - T = 0.1 (temperature) - J = 1 (interaction energy with nearest neighbors) -h = 0 (magnetic field) Simulation was coded in Python, using numpy and matplotlib libraires.
QuantumSimLite - My quantum simulation application
Просмотров 7910 месяцев назад
Hello everyone, I'm excited to announce the launch of QuantumSimLite, my quantum simulation application ! QuantumSimLite allows you to visualize eigenstates and eigenenergies for any potential you create. Dive into the fascinating world of quantum dynamics in both position and momentum representations. Plus, you have the ability to save your eigenstates and dynamic simulations ! Download links:...
Software to play with 1D quantum systems
Просмотров 18210 месяцев назад
Hello everyone, I'm pleased to share a forthcoming software release that focuses on calculating energy levels and eigenstates of a single particle in one dimension, accommodating any potential (demonstrated in the video). Additionally, the software allows for quantum dynamic simulations (also showcased in the video) ! Stay tuned for the release !
Particule in a quantum box with a christmas tree shape
Просмотров 12310 месяцев назад
This animation shows the density probaility of a particle in a 2d box with a christmas tree shape. The color represents the probability density of finding the particle at a given place, yellow is more likely, black is less likely. Initial wave is a sum of two gaussian wave packets with no momentum.
Reaction Evolution (in collaboration with @EMorgensztern)
Просмотров 51Год назад
Evolution of Reactions There are three types of particles that appear at different time intervals: Resources (green), which emerge initially at time zero and have a certain probability of both birth and death. Prey (blue), which first appear at 1/4 of the total time frame (Tf). They are born when a prey encounters a resource, and they have a certain probability of death. Predators (red), which ...
Turing patern with different parameters
Просмотров 117Год назад
The Turing pattern is a concept introduced by English mathematician Alan Turing in a 1952 paper titled "The Chemical Basis of Morphogenesis" which describes how patterns in nature, such as stripes and spots, can arise naturally and autonomously from a homogeneous, uniform state.The pattern arises due to Turing instability which in turn arises due to the interplay between differential diffusion ...
Solving the wave equation in different systems
Просмотров 254Год назад
Solving the wave equation in different systems : - Young's interference experiment - Wave in a maze - Converging lens experiment - Wave in a heterogeneous environment - "Rain" simulation - Doppler Effect. Wave equation is solved using finite difference method.
Cross sections of the first orbitals of the H19 ion in a triangular lattice
Просмотров 70Год назад
Cross sections of the first orbitals of the H19 ion in a triangular lattice Energy potential of H19( 18) is given by the potential between the nucleus (in the approximation where they are motionless) and between the nucleus and the unique electron. We can then comput the hamiltonien using derivative approximation for the Laplacian and calculate his eigenvalues and eigenvectors. The color repres...
Cross sections of the first Orbitals of the Dihydrogen Cation (H2+)
Просмотров 230Год назад
Cross sections of the first Orbitals of the Dihydrogen Cation (H2 ). Potential of H2 is given by V(x, y) = -1/((x-R)² y²)^(1/2) - 1/((x R)² y²)^(1/2) 1/(2R) where R is the distance between the 2 nucleus. We can then comput the hamiltonien using derivative approximation for the Laplacian and calculate his eigenvalues and eigenvectors. The color represents the probability density of finding the e...
Cross sections of the first Orbitals of the Hydrogen Atom
Просмотров 123Год назад
Probability density patterns of Cross sections of the first Orbitals of the Hydrogen Atom. Potential of Hydrogen Atom is given by V(x, y) = 1/(x² y²)^(1/2) We can then comput the hamiltonien using derivative approximation for the Laplacian and calculate his eigenvalues and eigenvectors. For the Hydrogen, the n-th eigen-energie is degenerate n² times. The color represents the probability density...
Probability density patterns of eigenstates for the 2D harmonic oscillator
Просмотров 152Год назад
Probability density patterns of eigenstates for the 2D harmonic oscillator. Potential of an harmonic oscillator is given by V(x, y) = x² y² We can then comput the hamiltonien using derivative approximation for the Laplacian and calculate his eigenvalues and eigenvectors. For the 2D HO, the n-th eigen-energie is degenerate n 1 times.
Young's double-slit experiment for a quantum particle in a box
Просмотров 304Год назад
Young's double-slit experiment for a quantum particle in a box
One slit experiment with a quantum particle
Просмотров 82Год назад
One slit experiment with a quantum particle
Free quantum particle in a 2D square box
Просмотров 104Год назад
Free quantum particle in a 2D square box
Temperature evolution of a static fluid (20x20 initially cells)
Просмотров 57Год назад
Temperature evolution of a static fluid (20x20 initially cells)
Temperature evolution of a static fluid with an initially random temperature distribution
Просмотров 47Год назад
Temperature evolution of a static fluid with an initially random temperature distribution
Heat equation : temperature evolution of a static fluid
Просмотров 82Год назад
Heat equation : temperature evolution of a static fluid
Radiation of a Charged Brownian Particle
Просмотров 1102 года назад
Radiation of a Charged Brownian Particle
Dipole radiation : circularly polarized dipole
Просмотров 712 года назад
Dipole radiation : circularly polarized dipole
Spherical pendulum in an electrostatic potential
Просмотров 562 года назад
Spherical pendulum in an electrostatic potential
What exactly does the black line represent if it's a probability distribution?
take an integral over the probability (squared wavefunction) times the position and voila
Software name ??
Très beau boulot, bravo!
C'est bien si ça tourne en temps réel mais ça ne dois pas toujours bien converger. J'ai aussi vu ce qui me semble être des effets de bord
Je suis premier, ça manque de musique de fond ça max
J'viens d'en mettre une 👌
How did you render it?
Похоже, что это результаты численного решения уравнения Шредингера. Показанные здесь решения имею разную симметрию. Некоторые соответствуют точному значению момента импульса (0:02, 0:04 , 0:05, 0:18), другие же решения похожи на произведения функций одномерных осцилляторов - вдоль оси x и вдоль оси y (0:39,1:05, 2:14). Эта задача может быть решена аналитически. Либо в декартовой системе координат, либо в полярной. Решения в декартовой системе выражаются как произведения волновых функций psi_nx(x)*psi_ny(y), а в полярных как f_nr(r)*exp(i*m*phi), где f_nr(r) - радиальная часть волновой функции. Некоторые показанные в этом ролике функции не относятся ни к первому ни ко второму типу(например, 0:08, 0:14, 0:24, 1:41, 2:18). Возможно, такие случаи могут быть представлены как суперпозиция функций разных симметрий. При численном решении такое вполне могло получится, поскольку для высоких по энергии состояний кратность вырождения высокая, и численное решение может дать производный базис для подпространства вырожденных состояний.
I love it! What are the sine and cosine series for this?
Comment ça en collab avec lui Max sale traître En plus tu viens sur mon terrain ? Les réactions ?
Hello, could you let me know which software do you use to simulate?
I really enjoy watching your content, keep going mate
Super !
Super animations. C'est toi qui les fait ?
Merci, oui je les fais avec python !
@@maxime2928 Au top !
that was cool
Nice !
ok pls pin me
Wow
What is this experiment?
Nice video , keep up the good work
sundar
Hypnotisant
Is there the magnetic field?
No, we assume that there is no current and that the variation of the electric field is zero.
ᑭᖇOᗰOᔕᗰ
Love it ! Keep up the good work
Music : Powerup ! by Jeremy Blake
😍😍
Magique
Magnifique !
Maxime c'est toi qui la construit ?
Merci pour la vidéo