- Видео 172
- Просмотров 83 438
Rohit Dhankar
Добавлен 10 май 2014
github.com/RohitDhankar
LLAMA v2 Init experiments 2023 10 02 23:45:53
LLAMA_v2_Init_experiments_2023-10-02 23:45:53.mp4
-- github.com/RohitDhankar/Machine-Learning-with-Python_ML_Py/issues/125
-- github.com/RohitDhankar/Machine-Learning-with-Python_ML_Py/issues/125
Просмотров: 27
Видео
LAVIS Diffusers Testing blip diffusion
Просмотров 97Год назад
Thanks to the LEAD DEVELOPERS AT LAVIS and HUGGINGFACE DIFFUSERS - SAYAK PAUL www.linkedin.com/in/sayak-paul/ AYUSH MANGAL github.com/ayushtues , www.linkedin.com/in/ayushtues/ Am just running their code on a local system just trying to learn thanks
Pytorch_resnet50_Visualize_CONV_layer_Activation_Feature_Maps
Просмотров 10Год назад
Pytorch_resnet50_Visualize_CONV_layer_Activation_Feature_Maps github.com/RohitDhankar/Machine-Learning-with-Python_ML_Py/blob/master/src/basic_foo/a_test.py
UnetSkipConnectionBlock errors
Просмотров 40Год назад
UnetSkipConnectionBlock_errors AttributeError: 'UnetSkipConnectionBlock' object has no attribute '1' github.com/RohitDhankar/Machine-Learning-with-Python_ML_Py/issues/112
pytorch CycleGAN and pix2pix Test
Просмотров 534Год назад
pytorch_CycleGAN_and_pix2pix_Test Testing the INFERENCE code from this REPO github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/scripts/download_cyclegan_model.sh#L3
diffusers__TEST_write_own_pipeline
Просмотров 41Год назад
diffusers TEST_write_own_pipeline Thanks to HUGGING FACE huggingface.co/docs/transformers/task_summary
Active Learning - Image - Feature Extraction -Resnet50- Tensorflow-KERAS--Image Similarity , kNN
Просмотров 231Год назад
Active Learning - Image Processing - Feature Extraction -Resnet50- Tensorflow-KERAS Image Similarity , kNN
Lightly_Active_Learning - Feature Extraction Alternative Approach
Просмотров 37Год назад
Lightly_Active_Learning - Feature Extraction Alternative Approach github.com/RohitDhankar/test_lightly_1/issues/1
Active_Learning__Lightly--Caltech101_Faces--knn-SimSiam
Просмотров 60Год назад
Active_Learning Lightly Caltech101_Faces knn-SimSiam
Active Learning -- self-supervised learning on images. .
Просмотров 94Год назад
Active Learning self-supervised learning on images. .
RasterIO_rastervision--init Reading in diff dimension raster files
Просмотров 17Год назад
RasterIO_rastervision init Reading in diff dimension raster files
raster vision initial 2023 04 09 21:30:51
Просмотров 171Год назад
raster vision initial 2023 04 09 21:30:51 github.com/RohitDhankar/raster-vision github.com/RohitDhankar/raster-vision/tree/test/dev_rohit
chatGPT3 TajMahal VariationAPI 2023 04 02
Просмотров 44Год назад
chatGPT3 TajMahal VariationAPI 2023 04 02 #response = openai.Image.create_variation( #GitHub - github.com/RohitDhankar/chatGPT_experiments #LinkedIn - www.linkedin.com/in/rohitdhankar/
ChatGPT_initial_experiments
Просмотров 22Год назад
ChatGPT_initial_experiments heavily inspired by SENTDEX , he makes it sound so easy great job there !!
OpenPCDet_Initial_Demo_MAYAVI_KITTI_LIDAR
Просмотров 382 года назад
OpenPCDet_Initial_Demo_MAYAVI_KITTI_LIDAR
cv2.bitwise_and(frame_smaller,frame_smaller, mask= mask_blue)
Просмотров 3552 года назад
cv2.bitwise_and(frame_smaller,frame_smaller, mask= mask_blue)
PyTorch SimpleNet Scoring GARBAGE WASTE Glass
Просмотров 682 года назад
PyTorch SimpleNet Scoring GARBAGE WASTE Glass
Yolov4 TensorFlow DeepSORT ObjectTracking
Просмотров 1342 года назад
Yolov4 TensorFlow DeepSORT ObjectTracking
PyTorch TrashAnnotation in Context TACO_data 1
Просмотров 7482 года назад
PyTorch TrashAnnotation in Context TACO_data 1
Yolov4 Test CustomData Ubuntu GPU CUDA 11 mAP
Просмотров 352 года назад
Yolov4 Test CustomData Ubuntu GPU CUDA 11 mAP
How to resolve it? It is still zoomed in😅
LLAMA_v2_Init_experiments_2023-10-02 23:45:53.mp4 -- github.com/RohitDhankar/Machine-Learning-with-Python_ML_Py/issues/125
Thanks to the LEAD DEVELOPERS AT LAVIS and HUGGINGFACE DIFFUSERS - SAYAK PAUL -- www.linkedin.com/in/sayak-paul/ AYUSH MANGAL -- github.com/ayushtues , www.linkedin.com/in/ayushtues/ Am just running their code on a local system -- just trying to learn -- thanks
SEARCH IN GITHUB for more code snippets results.append(conv_layers[i](results[-1]) github.com/search?q=results.append%28conv_layers%5Bi%5D%28results%5B-1%5D%29&type=code
Pytorch_resnet50_Visualize_CONV_layer_Activation_Feature_Maps github.com/RohitDhankar/Machine-Learning-with-Python_ML_Py/blob/master/src/basic_foo/a_test.py
pytorch_CycleGAN_and_pix2pix_Test Testing the INFERENCE code from this REPO -- github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/scripts/download_cyclegan_model.sh#L3
@4:30-- detectron2 , COCO API explained , pycocotools , training data set , validation set , categories of the COCO Dataset
@3:30--detectron2--model_zoo -- explained
@13:00-- detectron2 -- LAUNCH Method explained -- from detectron2.engine import default_argument_parser, default_setup, default_writers, launch #
@30:00-- detectron2 -- config explained -- self.get_config.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"))
@31:00-- detectron2 -- config explained
@14:00 -- Initial experiments with Yolov4
github.com/RohitDhankar/test_lightly_1/issues/1
github.com/RohitDhankar/test_lightly_1/tree/alt_ftr_extract/output_dir/knn_plots_1/faces_1/_06_04_2023_23
Active Learning - Image Processing - Feature Extraction -Resnet50- Tensorflow-KERAS--Image Similarity , kNN github.com/RohitDhankar/test_lightly_1/tree/alt_ftr_extract/output_dir/knn_plots_1/faces_1/_06_04_2023_23
Lightly_Active_Learning - Feature Extraction Alternative Approach github.com/RohitDhankar/test_lightly_1/issues/1
@3:01 -- Early experiments with Tensorflow and Keras -- Tensorflow-forPoets--retrain.py
@1:11 -- Reading in multiple Raster TIFF Files with - rastervision and RasterIO
@8:50 -- Input Layers of an ANN Defined
@12:51 -- HaarCascade Classifiers for -- face and Eye Detection with OpenCV
@6:30-- Binary Masks of Images - the RLE Format for Bio Cells
1:20 - Suggestions for CPU and GPU Memory Swaps -- for GPU memory optimization issues
16:30 -- transforms.Compose -- Pytorch Transforming and augmenting images . transforms.ToTensor(),transforms.Normalize -- using the Imagenet STD DEVIATION and MEAN
13:00 - Freezing Layers , preventing back propagation -- torch.no_grad()
6:05 -- Neural Network Architecture - CNN Layers Explained
RasterVision -- continuing with init experiments github.com/RohitDhankar/raster-vision/blob/master/code/init_test_script.py
github.com/RohitDhankar/raster-vision Raster-VISION github.com/RohitDhankar/raster-vision Raster-VISION ruclips.net/video/vkR8yF4y6cw/видео.html
KAGGLE SARTORIUS COCO RLE Video 1 github.com/RohitDhankar/kaggle_sartorius-cell-instance-segmentation/pull/7
github.com/RohitDhankar/OpenPCDet/blob/master/init_INSTALL_ERRORS_1.md
Original Code and all CREDITS -->> github.com/open-mmlab/OpenPCDet
github.com/RohitDhankar/detectron2_coco_panoptic_seg
Detectron2 - Panoptic Segmentation ## Database : "The Penn-Fudan-Pedestrian Database" github.com/RohitDhankar/Obj_Detect_Detectron2
Detectron2_COCO_Data_5 YOU_TUBE -- ruclips.net/video/NRred6RjWsU/видео.html GITHUB -- github.com/RohitDhankar/Obj_Detect_Detectron2
github.com/RohitDhankar/Obj_Detect_Detectron2
github.com/RohitDhankar/Obj_Detect_Detectron2
can u pls show how to use with open cv
Can u explain what ur trying to do with opencv... Am sorry i couldn't understand.
@@rohitdhankar360 i want to use open cv to do image recognition and identify trash
@@ArduinoTamiza - if ure doing an academic project - Try OpenCV , it will take you more time and effort . Better to try Detectron2 or Yolov-3,4,5 or any other Object Detection framework . Dont go for OpenCV only approach .
@@rohitdhankar360 sure bro , thanks
github.com/RohitDhankar/Obj_Detect_Detectron2/tree/dev_rohit
github.com/RohitDhankar/obj_det/tree/dev_rohit/_taco_1
Can you please share the code? Or github link
Nice material. Looking forward to many more analytics videos.
Hi, is there any way where you can show the code or a part of it or show how you did it?
sir can i have source code for descriptive stats pls???
Can you please share the code to Study
Querying MongoDB - MongoCompass and MongoShell # Querying MongoDB - MongoCompass and MongoShell for an initial level data exploration task Am using the sample datasets provided by MongoATLAS This demo video is without a Voice Over as there is construction going on next door , they are very noisy :) My contacts - email-1 - dhankar.rohit@gmail.com email-2 - rohit.dhankar@strategic-leadership-llc-india.com LinkedIn - www.linkedin.com/in/rohitdhankar/ GitHub - github.com/RohitDhankar ### TASK -2 --- Split the collections into smaller collections . Split the existing collection on Review dates --- to create TEST Collections on which we can then practise our JOINS db.listingsAndReviews.count() ISODate("2019-02-07T05:00:00Z"), ISODate("2019-02-08T05:00:00Z"), ISODate("2019-02-09T05:00:00Z"), ISODate("2019-02-10T05:00:00Z"), ISODate("2019-02-11T05:00:00Z"), ISODate("2019-02-13T05:00:00Z"), #2019-02-08T05:00:00Z db.listingsAndReviews.find({ 'first_review': {$eq:ISODate("2019-02-07T05:00:00Z")}}) db.listingsAndReviews.find({ 'first_review': {$gt:ISODate("2019-02-07T05:00:00Z")}}).count() # 72 db.listingsAndReviews.find({ 'first_review': {$gte:ISODate("2019-02-07T05:00:00Z")}}).count() # 77 2016-01-03T05:00:00.000Z db.listingsAndReviews.find({ 'first_review': {$lte:ISODate("2016-01-03T05:00:00.000Z")}}).count() # 1112 db.listingsAndReviews.find({ 'first_review': {$gte:ISODate("2016-01-03T05:00:00.000Z")}}).count() #3072 {'first_review':{$gte:ISODate("2016-01-03T05:00:00.000Z")}} db.listingsAndReviews_backup.find( {first_review: {$gte: ISODate('2016-01-03T05:00:00.000Z')}} ) #3072 db.listingsAndReviews.find({ 'first_review': {$gte:ISODate("2016-01-03T05:00:00.000Z")}}).count() db.newCol_1.find({ 'first_review': {$gte:ISODate("2018-01-01T05:00:00.000Z")}}).count() use sample_airbnb show collections Compass {'first_review':{$gte:ISODate("2016-01-03T05:00:00.000Z")}} ISODate("2019-02-14T05:00:00Z"), ISODate("2019-02-15T05:00:00Z"), ISODate("2019-02-16T05:00:00Z"), ISODate("2019-02-17T05:00:00Z"), ISODate("2019-02-18T05:00:00Z"), ISODate("2019-02-19T05:00:00Z"), ISODate("2019-02-20T05:00:00Z"), ISODate("2019-02-22T05:00:00Z"), ISODate db.getSiblingDB("sample_airbnb").listingsAndReviews.aggregate([ {$group :{_id : "$first_review", num_occurence_of_attr_written_to_NewColl: { $push: "$first_review" }}}, {$out : "test_reviews_collection" } ]) use sample_airbnb show collections db.listingsAndReviews.count() db.listingsAndReviews. db.listingsAndReviews.renameCollection('listingsAndReviews_backup') db.new_collection.count() new_collection_backup db.new_collection_backup.count() db.new_collection_backup.findOne() db.new_collection.findOne() db.new_test_reviews_collection.count() db.new_test_reviews_collection.findOne() db.new_test_reviews_collection.drop() db.new_collection.renameCollection('new_collection_backup') db.new_collection_backup.updateMany( {}, { $rename: { "listingsAndReviews": "newName_listingsAndReviews" } } ) ### Convert Dtype # ascertain Dtypes db.test_reviews_collection.aggregate([{ "$project": { "key_DType": { "$type": "$first_review" } } } ]) db.listingsAndReviews.aggregate([{ "$project": { "key_DType": { "$type": "$first_review" } } } ]) ## here above the Dtype is a DATE .. whereas earlier with - distinct - we saw == ISODate("2019-02-22T05:00:00Z") { "_id": { "$date": "2016-11-27T05:00:00.000Z" }, "num_occurence_of_attr_written_to_NewColl": [{ "$date": "2016-11-27T05:00:00.000Z" }, { "$date": "2016-11-27T05:00:00.000Z" }, { "$date": "2016-11-27T05:00:00.000Z" }, { "$date": "2016-11-27T05:00:00.000Z" }] } ### Rename a Key db.listingsAndReviews.updateMany( {}, { $rename: { "first_review": "first_review_entry" } } ) ### within a .py module - Slice and .count() or .count_documents() db.listingsAndReviews.find({'name':{$gte:ISODate("2016-01-03T05:00:00.000Z")}}).count() {'first_review':{$gte:ISODate("2016-01-03T05:00:00.000Z")}} query_counts = {'summary': {'$regex': duplex}} query_counts1 = {'first_review': {'$gt': '2016-01-03T05:00:00.000Z'}, 'name': {'$regex': duplex }} query_counts2 = {'first_review': {'$gt': '2016-01-03T05:00:00.000Z', '$lt': '2016-01-07T07:00:00.000Z'}, 'summary': {'$regex': duplex}} query_Count = db.listingsAndReviews.count_documents(query_counts) query_Count_gt = db.listingsAndReviews.count_documents(query_counts1) query_Count_gt_lt = db.listingsAndReviews.count_documents(query_counts2) { "_id" : "10066928", "key_DType" : "missing" } { "_id" : "10057447", "key_DType" : "missing" } { "_id" : "10059244", "key_DType" : "missing" } { "_id" : "10066928", "key_DType" : "missing" } { "_id" : "10069642", "key_DType" : "missing" } { "_id" : "10030955", "key_DType" : "missing" } .findOne db.listingsAndReviews_backup.findOne() db.listingsAndReviews_backup.find({ '_id': {$eq:"10030955"}},{first_review:1}) db.listingsAndReviews_backup.find({ '_id': {$eq:"10069642"}},{first_review:1}) ### So it would seem that the KEY == first_review --- is missing ? Checking within Compass --- Yes that’s the reason we get no legible return from Distinct ? ### CONFIRMED that the KEY == first_review --- is missing ?
@7:30 - Live WebScraping AMAZON India - Python Code in the Jupyter Notebook
@4:50 - Live WebScraping AMAZON India - Python Code in the Jupyter Notebook
@12:00 - Price fluctuation of Products on SNAPDEAL
@6:00 -- SSL certbot Nginx Configuration
@3:01 - Nginx config file
@22:00 - Need to beyond 68 Facial Landmarks - require atleast 128