Numb3r Tr33
Numb3r Tr33
  • Видео 18
  • Просмотров 487 149
Satisfying Space Filling Curves: 1D Becoming 2D
Here's a short compilation exclusively for fractal space filling curves, the most satisfying type of fractal.
Animation Tool: Manim library, Python
#maths #art #visualization #geometry #python #visual #satisfying #satisfyingvideo #algorithm #fractal #fractals #dragon #flowsnake #anklets #triangle #hilbert #fractalgeometry #coding #programming #visualprogramming #relaxing #manim
Просмотров: 15 748

Видео

Turning Math Into Art With Amazing Fractals
Просмотров 62 тыс.Год назад
Here's the reloaded compilation of the algorithms used to obtain some of the most famous fractals, a clear example of how one can turn mathematics into art! #maths #art #visualization #geometry #python #visual #algorithm #fractal #fractals #dragon #tree #snowflake #hilbert #fractalgeometry #coding #programming #visualprogramming #relaxing #manim Visualization Tool: Manim library, Python
Turning Math Into Art With Beautiful Fractals
Просмотров 385 тыс.Год назад
Here's a compilation of the algorithms used to obtain the most famous and beautiful fractals, a clear example of how one can turn mathematics into art! #maths #art #visualization #geometry #python #visual #algorithm #fractal #fractals #dragon #tree #snowflake #hilbert #fractalgeometry #coding #programming #visualprogramming #relaxing #manim Visualization Tool: Manim library, Python
Top 3 Pythagorean Theorem Visualizations
Просмотров 2 тыс.Год назад
Here's the top 3 list of the Pythagorean theorem visualizations. These are the most immediate, clear and intuitive visualizations amongst the existing ones. #maths #visualization #geometry #python #visualproof #proof #pythagoras #theorem
Visual Proof for the Square and the Cube of a Binomial
Просмотров 2,4 тыс.Год назад
In this video two famous visual proofs to show where the square and the cube of a binomial come from. #maths #algebra #geometry #proof #visualization #visualproof #python Visualization tool: Manim library, Python
Visual Proof for the Sum of the First n Cubes
Просмотров 2,3 тыс.Год назад
Here's the famous visual proof for the sum of the squares of the first n natural numbers. #maths #numbertheory #algebra #geometry #visualization #visualproof #python Visualization tool: Manim library, Python
Hilarious New Proof for the Sum of the First n Squares
Просмотров 1,1 тыс.Год назад
This video shows a different way of finding the formula for the sum of n squares, through an alternative visualization. The process of proofing has been simplified in a non-rigorous way, in order to make the understanding of the concept smoother. The rigorous proof is coming soon in a paper that will be posted in the description of this video, for which I want to thank my best friend Luigi, who...
Visual Proof for the Sum of the First n Natural Numbers
Просмотров 1 тыс.Год назад
This is a short and sweet visualization of the famous Gauss formula, used to find the sum of the first n positive integers. #gaussian #formula #visualization #maths #algebra #geometry #numbertheory #python Visualization tool: Manim library, Python
Finding an Impossible Integral With Simulation
Просмотров 1,1 тыс.Год назад
Finding an Impossible Integral With Simulation
Law of Large Numbers - A Visual Intuition
Просмотров 775Год назад
Law of Large Numbers - A Visual Intuition
Finding Pi Through Simulation
Просмотров 1,3 тыс.Год назад
Finding Pi Through Simulation

Комментарии

  • @LouiseRheyGonzales
    @LouiseRheyGonzales 9 часов назад

    Sierpensi arrowhead curve - Sierpensi triangle

  • @Thenoob-h7r
    @Thenoob-h7r 19 часов назад

    Snow 2:45

  • @Quoth_the_Ravn
    @Quoth_the_Ravn 3 дня назад

    Love your videos - just a note on this one though, its 2D staying 2D, rather than 1D becoming 2D. The lines depicted have thickness ( a second dimension). If the lines were truly 1D (even if repeated infinite times) there would always be gaps between them. Imagine zooming in with every division, you'd notice the same amount of space between lines as when you started. Otherwise great stuff - nice music too

    • @Numb3rTr33
      @Numb3rTr33 День назад

      Hi! Actually I have to tell you, fractals have a weird geometry and when converging to infinity things change. Many fractals have a number of dimensions even irrational numbers, which is counter intuitive. If you search about fractal dimensions you'll find a lot of resources about it

    • @Quoth_the_Ravn
      @Quoth_the_Ravn 23 часа назад

      Oh right - thank you, I didnt know about that ​@@Numb3rTr33

  • @J1RRYH
    @J1RRYH 3 дня назад

    WOnderful

  • @Radenshov
    @Radenshov 4 дня назад

    2:04 D4C

  • @Mytdlover
    @Mytdlover 7 дней назад

    The "Fibonacci Snowflake" it starts with a ◆ and then multiplies but you can still see the ◆

  • @ninety-nine-seconds
    @ninety-nine-seconds 8 дней назад

    This is why we have the Mona Lisa in squid games

  • @DavinbryanChen
    @DavinbryanChen 10 дней назад

    Bentuk itu kayak buah

  • @DavinbryanChen
    @DavinbryanChen 10 дней назад

    Bah kan lebih IMPOSSIBLE

  • @DavinbryanChen
    @DavinbryanChen 10 дней назад

    Itu semua bentuknya IMPOSSIBLE

  • @Intermediateblackhole
    @Intermediateblackhole 11 дней назад

    Numb3r Tr33 is a pythagorean tree😮

  • @fedor6620
    @fedor6620 13 дней назад

    Mitsubishi 3:17

  • @pufferfishboi6353
    @pufferfishboi6353 16 дней назад

    1:43 u just completed my childhood wishes. Always did those back in the copies wondering what it would look like but the copy never had a big space to it.

  • @Rajnibala-sf4hj
    @Rajnibala-sf4hj 20 дней назад

    3:18 - Mitsubishi logo

  • @soup9242
    @soup9242 21 день назад

    I find it interesting that you can see Koch snowflakes within the hexaflake.

  • @RonaldoLoyola-v1h
    @RonaldoLoyola-v1h 25 дней назад

    3:18 toyota 😂

  • @russianAABB
    @russianAABB 28 дней назад

    there's like so much fractals I have never seen or heard like Photagrean tree

  • @HedgeWolf23
    @HedgeWolf23 29 дней назад

    The Levy curve would have been amazing to end on, as it would have been the outline of the tree.

  • @OmegamonUI
    @OmegamonUI Месяц назад

    interessant das die sierpinski kurve die aus einem sierpinski dreieck entsteht am ende wie ein sierpinski dreieck aussieht.

  • @Gaboor-q8y
    @Gaboor-q8y Месяц назад

    2:32 🔶 💠

  • @lilozinho
    @lilozinho Месяц назад

    1:20 Pythagorean Tree 345 looks like a human brain!

  • @SmartKidOmkar
    @SmartKidOmkar Месяц назад

    1:40 squid game 2:

  • @Gshock034money
    @Gshock034money Месяц назад

    Osteoporosis

  • @Stellar32042
    @Stellar32042 Месяц назад

    Whats the name of the song?

  • @ilikepaty555
    @ilikepaty555 Месяц назад

    3:17 Handa!

  • @Antoniocesar-83a
    @Antoniocesar-83a Месяц назад

    The hexa flake has infinite koch snow flakes inside it

  • @9o2-_86h
    @9o2-_86h Месяц назад

    3:17 Mitsubishi

  • @isa-belyaa
    @isa-belyaa Месяц назад

    Hilbert and Gosper were strangers in real life(im dont speak english, iam Brazilian. And, this a joke)

  • @TheoNatanValera
    @TheoNatanValera Месяц назад

    in hexaflake, i'm seeing koch snowflakes too

  • @ajscout594
    @ajscout594 Месяц назад

    Fractals are awesome.

  • @S.kThanya
    @S.kThanya Месяц назад

    This video is great! Thanks a lot!

  • @mariammustapha7967
    @mariammustapha7967 Месяц назад

    i forgot to put 2:06

  • @mariammustapha7967
    @mariammustapha7967 Месяц назад

    that looks like the shape player from game inside a game

  • @Michael-m3t4k
    @Michael-m3t4k Месяц назад

    Mandelbrot set?

  • @Hidden850
    @Hidden850 Месяц назад

    0:07 the best by far organ in the body

  • @laurenth7187
    @laurenth7187 Месяц назад

    But writing fractals in Qbasic isn't easy...

  • @Goofyguy27-s9d
    @Goofyguy27-s9d Месяц назад

    One of the chapters is 3:14

  • @Mc星辰
    @Mc星辰 Месяц назад

    What software is this?

  • @user-xu5bk7zg1e
    @user-xu5bk7zg1e Месяц назад

    Koch Curve 85 is giving me evangelion flashbacks

  • @ljubijankicsabahudin9737
    @ljubijankicsabahudin9737 Месяц назад

    This video is the gate to heaven.

  • @jarekk.8247
    @jarekk.8247 2 месяца назад

    (2⁴+5⁴) - [(1/e)/α^(π/5)]^(5/φ) = 0 φ = 1,6180339887... golden ratio, e = 2,7182818284... (Napier's constant, Euler's number), α = 0,0072973525677... (fine-structure constant)

  • @lord_ninja3284
    @lord_ninja3284 2 месяца назад

    4:20 umm familiar shape???🇩🇪

  • @ToadSquad3
    @ToadSquad3 2 месяца назад

    2:36 oh hey, PK Freeze alpha

  • @003_lmao
    @003_lmao 2 месяца назад

    domain expansion: sierpinski triangle 1:10 transforms into sierpinski triangle 1:28

  • @Shay-i4n
    @Shay-i4n 2 месяца назад

    ❤😊

  • @SUPERSEDFRZ2025
    @SUPERSEDFRZ2025 2 месяца назад

    They look peculiar

  • @SUPERSEDFRZ2025
    @SUPERSEDFRZ2025 2 месяца назад

    The hexafalke starts with a hexagon…

  • @rachelowens4871
    @rachelowens4871 2 месяца назад

    2:14 H fractal

  • @Chomiks764
    @Chomiks764 2 месяца назад

    Me: Spell Red Dummy: Red? L S T E R Me: What color is A Carrot? Dummy: I think It Is Umm… I Think It’s Uhhhhh… I think it’s A Carrot Uhmmm… Idk about Carrots (idk about carrots) Me: If you dig a 6ft Hole, how Deep is That Hole? Dummy: Uhh… 20ft. GET- Me: … 1 - 1 = ? Dummy: Equals? 35 Me: (I Give Up)

  • @mxsteri0
    @mxsteri0 2 месяца назад

    i hate the fact that you're not famous enough! this has to get more fame but youtube does its thing to push content creators like you far back :(