Atul Patel
Atul Patel
  • Видео 121
  • Просмотров 293 381
Different Oversampling techniques to handle imbalance data in machine learning | SMOTE | Part3
Different Techniques to deal with Imbalanced Dataset (Imbalanced Classes) in Machine Learning using Oversampling
00:10 Random Over-Sampling and Random over-sampling with imblearn
01:37 SMOTE -Synthetic Minority Oversampling Technique
02:41 SMOTE-NC
03:35 Borderline-SMOTE
09:57 Borderline-SMOTE SVM
11:13 KMeansSMOTE
14:22 Oversampling with Adaptive Synthetic sampling(ADASYN)
16:03 Creating logistic Regression Model before Over-Sampling
16:17 Creating logistic Regression Model using Over-Sampling DataSet
17:20 Combining Oversampling and Undersampling to handle imbalance datasets
18:06 Resampling technique using right performance metric
19:10 Resampling technique using Penalize Algorithms (Cost-Sensitiv...
Просмотров: 313

Видео

Handling Imbalanced datasets using Under-sampling techniques Part2
Просмотров 18710 месяцев назад
Different Techniques to deal with Imbalanced Dataset (Imbalanced Classes) in Machine Learning using undersampling 00:07 Random under-sampling with imblearn 02:07 Under-sampling: Tomek links 02:41 Undersampling with Cluster Centroids 03:22 Near Miss Undersampling 05:00 Undersampling with Neighborhood Cleaning Rule 06:47 Creating logistic Regression Model before Under-Sampling 07:45 Creating logi...
Imbalanced Dataset and issue with imbalanced dataset | what is Under sampling and Oversampling Part1
Просмотров 21010 месяцев назад
Please refer below link to access the code : github.com/atulpatelDS/RUclips/blob/main/Machine_Learning/Imbalanced_Dataset_Handling/Different Techniques to deal with Imbalanced Dataset (Imbalanced Classes) in Machine Learning.ipynb
Precision Recall Curve in Machine Learning
Просмотров 12 тыс.3 года назад
00:00 What is Precision-Recall Curve ? #PrecisionRecallCurve #confusionMatrix #Recall #precision #accuracy #machinelearning #datascience #classificationalgorithm
AUC-ROC Curve in Machine Learning
Просмотров 8533 года назад
00:00 What is the AUC-ROC Curve ? 05:45 How do we Plot the AUC-ROC Curve ? 07:24 How does the AUC-ROC curve work ? 16:40 How does the AUC(Area Under the curve) work ? #AUCROC #AUC #ROC #confusionMatrix #Recall #precision #accuracy #machinelearning #datascience #classificationalgorithm
Accuracy, Precision, Recall, TPR, FPR, Specificity, Sensitivity, F1 Score in Machine Learning
Просмотров 1,7 тыс.3 года назад
00:00 What is accuracy in machine learning ? 03:15 What is incorrect classification rate in machine learning? 04:23 What is Precision or positive predictive value(PPV) in machine learning ? 07:12 What is negative predictive value(NPV) in machine learning ? 08:00 What is Recall or sensitivity or detection rate or true positive rate(TPR) in machine learning ? 10:55 what is specificity or True Neg...
Confusion matrix, True Positive (TP), True Negative (TN), False Positive (FP),False Negative(FN)
Просмотров 4,8 тыс.3 года назад
00:00 What is confusion Matrix in Classification Problem ? 03:35 What is True Positive, True Negative,False Positive, False Negative #ConfusionMatrix #MachineLearning #TruePositive #FalsePositive #FalseNegative #TrueNegative #DataScience #ClassificationAlgorithm
Log Loss or Cross Entropy Loss or Cost Function in Logistic Regression Tutorial 4
Просмотров 3223 года назад
#LogisticRegression #CostFunction #MachineLearning #DataScience #ClassificationAlgorithm
Maximum log likelihood Intuition of Logistic Regression Tutorial 3
Просмотров 2093 года назад
#LogisticRegression #loglikelihood #MachineLearning #DataScience #ClassificationAlgorithm
Credit Card defaulter Prediction using Logistic Regression Tutorial 5
Просмотров 2,2 тыс.3 года назад
#LogisticRegression #SigmoidFunction #LogitFunction #MachineLearning #DataScience #ClassificationAlgorithm #CreditcardDefaultersPrediction #DefaultersPrediction Used Python Code Link : github.com/atulpatelDS/RUclips/blob/main/Machine_Learning/Logistic_Regression/Credit Card defaulter Prediction Logistic Regression Tutorial 5.ipynb
Logistic Regression Geometrical Intuition Tutorial 2
Просмотров 3153 года назад
00:00 Geometrical Intuition of Logistic Regression 13:25 Need of Logit Function or Sigmoid Function or S-shape Curve in Logistic Regression #LogisticRegression #SigmoidFunction #LogitFunction #MachineLearning #DataScience #ClassificationAlgorithm
Logistic Regression Mathematical Intuition Tutorial 1
Просмотров 6993 года назад
00:00 What is Logistic Regression ? 07:04 Why we cannot use Linear regression for Classification ? 11:16 Use of Logit Function or Sigmoid Function in Mathematical Intuition of Logistic Regression ? #LogisticRegression #SigmoidFunction #LogitFunction #MachineLearning #DataScience #ClassificationAlgorithm
Categorical Feature selection using chi squared |Hands-on with Sklearn and Python part2|Tutorial 13
Просмотров 3,3 тыс.3 года назад
00:00 What is Chi square Test , Goodness of Fit and Test of Independence ? 01:32 Hands-on Categorical Feature Selection using sklearn Library and chi2 and selectkbest method using python Used Python Notebook : github.com/atulpatelDS/RUclips/blob/main/Feature_Engineering/Categorical Feature Selection using sklearn Library chi2 and SelectKbest function Tutorial 13.ipynb #DataScience #MachineLearn...
Categorical Feature selection using chi squared | Hands-on with Scipy and Python part1|Tutorial 12
Просмотров 1,9 тыс.3 года назад
00:00 What is Chi square Test , Goodness of Fit and Test of Independence ? 03:50 Hands-on Categorical Feature Selection using Scipy Library and chi_contingency method using python Used Python Notebook : github.com/atulpatelDS/RUclips/blob/main/Feature_Engineering/Categorical_Features_Selection_using_scipy_library_Chi2_Test_Tutorial_12.ipynb #DataScience #MachineLearning #CategoricalFeatureSelec...
Feature Selection Embedded Method Tree Based Algorithm Random Forest |Tutorial 11
Просмотров 4 тыс.3 года назад
00:00 What is Tree Based Embedded Feature Selection using Random Forest ? 01:07 Hands-on Random forest feature selection using sklearn and python Used Python NoteBook : github.com/atulpatelDS/RUclips/blob/main/Feature_Engineering/Feature_Selection_Tutorial_10_11_Embedded_Method.ipynb #DataScience #MachineLearning #FeatureSelectionEmbedded
Feature Selection Embedded Method Lasso L1 Regularization|Tutorial 10
Просмотров 2,5 тыс.3 года назад
Feature Selection Embedded Method Lasso L1 Regularization|Tutorial 10
Exhaustive Feature Selection | Wrapper Method Part 3 | Tutorial 9
Просмотров 1,9 тыс.3 года назад
Exhaustive Feature Selection | Wrapper Method Part 3 | Tutorial 9
Backward Feature Selection |Sequential Backward Selection|Wrapper Method Part 2|Tutorial 8
Просмотров 2,9 тыс.3 года назад
Backward Feature Selection |Sequential Backward Selection|Wrapper Method Part 2|Tutorial 8
Forward Feature Selection |Sequential Forward Selection|Wrapper Method Part1|Tutorial 7
Просмотров 9 тыс.3 года назад
Forward Feature Selection |Sequential Forward Selection|Wrapper Method Part1|Tutorial 7
What is Range is Statistics|Data Science|Machine Learning
Просмотров 5683 года назад
What is Range is Statistics|Data Science|Machine Learning
Lasso(L1) ,Ridge(L2) and Elastic-Net(L1/L2) Regularization hands-on python in Machine Learning
Просмотров 4243 года назад
Lasso(L1) ,Ridge(L2) and Elastic-Net(L1/L2) Regularization hands-on python in Machine Learning
bias variance tradeoff in machine learning|Data Science
Просмотров 3763 года назад
bias variance tradeoff in machine learning|Data Science
underfitting and overfitting in machine learning and how to overcome underfitting and overfitting
Просмотров 2233 года назад
underfitting and overfitting in machine learning and how to overcome underfitting and overfitting
Bias Variance in Machine Learning|Data Science
Просмотров 1493 года назад
Bias Variance in Machine Learning|Data Science
OLS Statsmodels Summary Table Explanation in details | Linear Regression Machine Learning|Data Scien
Просмотров 12 тыс.3 года назад
OLS Statsmodels Summary Table Explanation in details | Linear Regression Machine Learning|Data Scien
Mathematical Intuition behind Linear Regression with Sklearn|Machines Learning|Data Science
Просмотров 1733 года назад
Mathematical Intuition behind Linear Regression with Sklearn|Machines Learning|Data Science
Gradient Descent Hands-on for Linear Regression | Part 2|Machines Learning|Data Science
Просмотров 1293 года назад
Gradient Descent Hands-on for Linear Regression | Part 2|Machines Learning|Data Science
Gradient Descent Clearly Explanation for Linear Regression | Part -1|Machines Learning|Data Science
Просмотров 1513 года назад
Gradient Descent Clearly Explanation for Linear Regression | Part -1|Machines Learning|Data Science
Linear Regression Statsmodels Library Mathematical Intuition and Hands-on
Просмотров 4133 года назад
Linear Regression Statsmodels Library Mathematical Intuition and Hands-on
Verifying the Assumptions of Linear Regression using Python and Stats Library|Part 2|Machines Learn
Просмотров 8713 года назад
Verifying the Assumptions of Linear Regression using Python and Stats Library|Part 2|Machines Learn

Комментарии

  • @2406shyam
    @2406shyam 9 дней назад

    perfect explanation

  • @2406shyam
    @2406shyam 9 дней назад

    Very good

  • @2406shyam
    @2406shyam 9 дней назад

    excellent Atul

  • @manojbohra6471
    @manojbohra6471 Месяц назад

    Good sir ❤❤❤❤

  • @sahirulislam7478
    @sahirulislam7478 3 месяца назад

    sir i went to contact with you please share you contact

  • @shreypatel356
    @shreypatel356 4 месяца назад

    Thanks for sharing this knowledge!

  • @Agent-f3g
    @Agent-f3g 4 месяца назад

    cleanest explanation ever 👍

  • @My-Diary
    @My-Diary 4 месяца назад

    Very helpful.

  • @My-Diary
    @My-Diary 4 месяца назад

    Very Helpful video. Thank you Atul.

  • @navneetgupta4669
    @navneetgupta4669 7 месяцев назад

    Hello Atul, I have one doubt. While doing linear regression, how can we check the linearity between independent variable and dependent variable if our independent variable is categorical? There will be both continuous and categorical data while creating the model.

  • @noihr4469
    @noihr4469 7 месяцев назад

    You're amazing! Thanks for the material

  • @TechBalu
    @TechBalu 7 месяцев назад

    one of the useful video watched in the 2024

  • @NehaJoshi-x5n
    @NehaJoshi-x5n 8 месяцев назад

    Excellent explanation!

  • @subramanianchenniappan4059
    @subramanianchenniappan4059 9 месяцев назад

    Thanks

  • @Ram-oj4gn
    @Ram-oj4gn 9 месяцев назад

    Excellent I am searching a long time for practical use of statistics test in model creation, I got answer from you.. gratitude to you..

  • @younesgasmi8518
    @younesgasmi8518 9 месяцев назад

    Can I use oversampling or undersampling techniques before Splitting the dataset into training and testing ?

  • @chiomaobiajulu4363
    @chiomaobiajulu4363 9 месяцев назад

    this is a very helpful video, I must admit. Nice work. I'd love to ask though, what do we do with the NaN gotten after using the groupby function? I mean, how can we replace it with a reasonable value afterwards?

  • @harshays2873
    @harshays2873 10 месяцев назад

    after removing one column(Columns A) to reduce multicollinearity, the other columns(Education, Rating) VIF has Increased, may i know the reason and solution for this ?

  • @muhammadumar-lb1yb
    @muhammadumar-lb1yb 10 месяцев назад

    thanks

  • @HaleemaRajpoot-i1b
    @HaleemaRajpoot-i1b 10 месяцев назад

    Well explained

  • @kunaldass-dl4jk
    @kunaldass-dl4jk 11 месяцев назад

    Good job brother. Basic topics are necessary. ♥️

  • @gurpreetkaur-pf1bf
    @gurpreetkaur-pf1bf 11 месяцев назад

    Thku so much sir

  • @krishnashauzshenikala9240
    @krishnashauzshenikala9240 Год назад

    thanks sir simple english and easy to understand

  • @tansutazegul8297
    @tansutazegul8297 Год назад

    Thats just an amazing work and great effort m8!!!

  • @arysuryadi4572
    @arysuryadi4572 Год назад

    Thanks for sharing this ! :)

  • @nazaransari2463
    @nazaransari2463 Год назад

    Sir why did u stop making the Series of this domain , please continue as only your channel show end to end explanation of each step to be implement in real world scenario

  • @aryan00008
    @aryan00008 Год назад

    Hindi me bola kar

  • @serajunnabi6998
    @serajunnabi6998 Год назад

    How did you make the output variable? I mean how did u found the deafult attribute?

  • @luisrobles_CL
    @luisrobles_CL Год назад

    great information, thanks a lot!

  • @safar.jasimalsultany6756
    @safar.jasimalsultany6756 Год назад

    How can I contact with you

  • @tasin-sc
    @tasin-sc Год назад

    Thanks

  • @itsyournafiz296
    @itsyournafiz296 Год назад

    Very simple briefings, really helpful strategy. Thanks a lot.

  • @MrAlaalaMo
    @MrAlaalaMo Год назад

    This video was very informative, but I think you may be selling viewers short by not splitting your dataset into a test/train set at the start prior to learning the p-values and parameters of the f-test. If this were to be done, this would ensure there is no data leakage from this preprocessing step. There is no guarantee this is an effective method if it doesn't generalize to a holdout set that was preprocessed using parameters learned from only the training set. Also did you check the data satisfies the assumption of the F-test?

  • @tutorialoke3562
    @tutorialoke3562 Год назад

    can mutual information be processed using rapidminer? and naiv bayes

  • @sameerthete6568
    @sameerthete6568 Год назад

    you deserve thousands of likes 👍❤

  • @acharyabinash
    @acharyabinash Год назад

    how is 'A' 0.5 when 7 was divided by 20 or did I miss anything??

  • @radhekrashna2148
    @radhekrashna2148 Год назад

    Thank you great knowledge

  • @m0tivati0n71
    @m0tivati0n71 Год назад

    Thank you for the great explanations.

  • @kanchannatekar5798
    @kanchannatekar5798 Год назад

    superb explanation

  • @harshavardhan6368
    @harshavardhan6368 Год назад

    why are u doing before test train split

  • @shubhamsd100
    @shubhamsd100 Год назад

    Sir, how to calculate the f(x) in PDF i.e the Y-axis values??

  • @idaraokposen7444
    @idaraokposen7444 Год назад

    Excellent video, thanks

  • @swati4207
    @swati4207 Год назад

    I don’t know how this is not famous…it is absolute best

  • @swati4207
    @swati4207 Год назад

    Thank you sir

  • @nationhlohlomi9333
    @nationhlohlomi9333 Год назад

    Great video

  • @maaleem90
    @maaleem90 Год назад

    i liked the explanation brother detailed explanation. i have a doubt i hope you enlighten me on this . if i have a regression problem and the inputs are categorical , how should i select the best features . regression problem and categorical variables .

  • @mandarbagul3008
    @mandarbagul3008 Год назад

    thank you sir!

  • @sushanttyagi8550
    @sushanttyagi8550 Год назад

    nice👍

  • @HeyCurlyBoy
    @HeyCurlyBoy Год назад

    Thank you so much for consolidating all the information together!!

  • @prabhatverma4243
    @prabhatverma4243 Год назад

    Million times thanks!