- Видео 36
- Просмотров 15 107
Quant circle
Индия
Добавлен 21 май 2024
This channel provides some good math Questions in a clearly explained way. Step by step understanding is essential for solving a question and you can get it here.
Series Question – Find The Sum 11+13+19+37+…n terms
Series Question - Find The Sum 11+13+19+37+…n terms
#sequences_and_series
#sequences_and_series
Просмотров: 33
Видео
An Excellent Geometry Problem - Find The Measure of The Angle STR
Просмотров 377День назад
An Excellent Geometry Problem - Find The Measure of The Angle STR #geometryproblem #geometryquestion
A Geometry Problem ( Solved Using Rotation )
Просмотров 1,6 тыс.14 дней назад
A Geometry Problem ( Solved Using Rotation ) #geometry #geometryproblem
A challenging Question- Find The Initial Amount Of Salt in Beaker B1
Просмотров 6828 дней назад
Can You Solve This Variable Based Percentage Question #percentagemaths #percentageproblems
Not as easy as it looks - A challenging geometry problem
Просмотров 1,5 тыс.Месяц назад
Not as easy as it looks - A challenging geometry problem #geometryproblem #geometryquestion
The Ratio of Areas - A Tricky Geometry question
Просмотров 246Месяц назад
Can you Solve This Geometry Problem made up of multiple triangles? #geometryquestion #geometryproblem
Can you Solve This Missing Number Puzzle!
Просмотров 35Месяц назад
Can you Solve This Missing Number Puzzle! #reasoningpuzzle #missingnumbers
How to Solve This Tricky Geometry Problem Made up of Three Circles
Просмотров 1,1 тыс.Месяц назад
How to Solve This Tricky Geometry Problem Made up of Three Circles ? #geometryproblem #geometryquestion
A tough geometry question with cone - cylinder combination
Просмотров 2482 месяца назад
A tough geometry question with cone - cylinder combination #maths #geometry #toughgeometryquestion
How to Solve This Tricky Infinite Series Problem
Просмотров 8052 месяца назад
How to Solve This Tricky Infinite Series Problem #maths #sequenceandseries #mathquestion
Can you solve the series of squares with diminishing sides
Просмотров 672 месяца назад
Solve the series of squares with diminishing sides #sequenceandseries #maths #progression
Can you solve this number system puzzle?
Просмотров 653 месяца назад
Can you solve this number system puzzle? A challenging question of Number system Question - How many four digit numbers are there that are divisible by eighteen and include the number 18 itself ? #numbersystem #mathquestion #divisibilityquestion
Quickly determine trigonometric ratios for angles 30,37,45,53,60 degrees
Просмотров 903 месяца назад
Quickly determine trigonometric ratios for angles 30,37,45,53,60 degrees #trigonometry #trigonometryshorttricks #trigonometrybasics
A tough geometry question - Find the sides with given conditions
Просмотров 2433 месяца назад
A tough geometry question - Find the sides with given conditions
Number System question based on Factor Theorem
Просмотров 653 месяца назад
Number System question based on Factor Theorem
A complex geometry question with two in-circles combination.
Просмотров 4,2 тыс.4 месяца назад
A complex geometry question with two in-circles combination.
maximum number of wagons-question about engine capacity
Просмотров 644 месяца назад
maximum number of wagons-question about engine capacity
Can you solve this geometry problem ?
Просмотров 5554 месяца назад
Can you solve this geometry problem ?
Rectangular (CARTESIAN) coordinate system
Просмотров 234 месяца назад
Rectangular (CARTESIAN) coordinate system
(without voice) A Nice geometry question from Indian CAT exam .
Просмотров 3535 месяцев назад
(without voice) A Nice geometry question from Indian CAT exam .
geometry problem based on parallel lines
Просмотров 885 месяцев назад
geometry problem based on parallel lines
A tricky question of algebra - Beauty of maths.
Просмотров 885 месяцев назад
A tricky question of algebra - Beauty of maths.
Find the radius of inscribed circle ? Solve geometry mystery.
Просмотров 8865 месяцев назад
Find the radius of inscribed circle ? Solve geometry mystery.
Geometry problem based on circle properties.
Просмотров 2426 месяцев назад
Geometry problem based on circle properties.
basic understanding required to solve this geometry problem
Просмотров 586 месяцев назад
basic understanding required to solve this geometry problem
Algebra question with tricky approach | important math questions.
Просмотров 606 месяцев назад
Algebra question with tricky approach | important math questions.
Nice video Your video on other concepts Is as better as your video on geometry question I really like your work
@@DhanushJoshi-u1r thanks for this beautiful comment.
Ótima solução! 🎉🎉🎉
@@imetroangola17 Obrigado pelo comentário. Seu comentário é muito valioso para mim e continuará me inspirando.
Nice video
@@VirendraKumar-z4u thankyou
Nice
@@powerofSanatandharma thanks for watching.
Cos c = 34 - 4 r^2 / 30 C/ sinc = 1/ 4r 4r = sinc /c - 4rc = sin c Cos c = 34 - c^2 / 30 sin^2 c Cos c = 34 - c^2 / 30 sin^2 c Sin^2 c + cos^2 c = 1 16 r^2 c^2 + ( 34 - c^2 / 30 sin^2 c) ^2 = 1 16 r ^2 . 4r ^2 + ( 34 - 4r ^2 / 30 . 4 r^2 c^2 ) = 1 After solving quadratic eqn. Stated above we get the value of r I.e required in this question
Nice question sir An another good video with the different and nice concept
@@DhanushJoshi-u1r Thank you so much for your kind words! I'm glad you liked the question. Your support motivates me to create more such content!
Nice job
@@VirendraKumar-z4u thank you.
21²+20²=29²: triangle rectangle avec 3 entiers
@@xaviersoenen4460 Oui, c'est un triangle pythagoricien avec 29, 20 et 21. Si la base et la hauteur sont 20 et 21, alors l'hypoténuse sera 29.
Good job😊
@@RAJESHWARGUPTA-b1x Thank you so much for your kind words! Your support means a lot and motivates me to create even better content. Stay tuned for more exciting videos!
Nise video in geometry problem with trigonometry solution
@@VirendraKumar-z4u I'm delighted that you liked this video. I hope to continue providing you with valuable content like this in the future.
Very nice question
h²=400-x² h²=225-(25-x)² h²=225-625+50x-x² h²=-400+50x-x² 400-x²=-400+50x-x² 800=50x x=16 h²=400-256=144 h=12 20=16-r1+12-r1 20=28-2r1 r1=4 15=9-r2+12-r2 r2=3 AB²=(4-3)²+(4+3)² AB²=1²+7² AB=√50 AB=5√2
it resulted in a repeated calculation: 10 print "quant circle-a geometry problem-solved using rotation" 20 dim x(2),y(2):l1=20:l2=21:l3=29:sw=sqr(l1^2+l2^2+l3^2)/39:goto 100 30 ys=sqr(l1^2-xs^2):dgu1=(xs-l4)^2/l2^2:dgu2=(ys/l2)^2:dg=dgu1+dgu2-1 40 return 50 xs=sw:gosub 30 60 dg1=dg:xs1=xs:xs=xs+sw/30:if xs>l1 then return 70 xs2=xs:gosub 30:if dg1*dg>0 then 60 80 xs=(xs1+xs2)/2:gosub 30:if dg1*dg>0 then xs1=xs else xs2=xs 90 if abs(dg)>1E-10 then 80 else return 100 l4=sw:goto 140 110 gosub 50:if xs>l1 then return 120 dfu1=(xs-l4/2)^2/l3^2:dfu2=(ys-sqr(3)/2*l4)^2/l3^2 130 df=dfu1+dfu2-1:return 140 gosub 110:if xs>l1 then else 160 150 l4=l4+sw:goto 140 160 l41=l4:df1=df:l4=l4+sw:l42=l4:gosub 110:if df1*df>0 then 160 170 l4=(l41+l42)/2:gosub 110:if df1*df>0 then l41=l4 else l42=l4 180 if abs(df)>1E-10 then 170 else 200 190 xbu=x*mass:ybu=y*mass:return 200 masy=1200*2/sqr(3)/l4:masx=850/l4:if masx<masy then mass=masx else mass=masy 210 x(0)=0:y(0)=0:x(1)=l4:y(1)=0:x(2)=l4/2:y(2)=sqr(3)*l4/2 220 x=x(0):y=y(0):gosub 190:xba=xbu:yba=ybu:for a=1 to 3:ia=a:if ia=3 then ia=0 230 x=x(ia):y=y(ia):gosub 190:xbn=xbu:ybn=ybu:goto 250 240 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 250 gosub 240:next a:gcol9:x=xs:y=ys:gosub 190:xbs=xbu:ybs=ybu:for a=0 to 2 260 xba=xbs:yba=ybs:x=x(a):y=y(a):gosub 190:xbn=xbu:ybn=ybu:gosub 240:next a 270 print "die gesuchte laenge des gleichseitigen dreiecks ist=";l4:ar=sqr(3)/4*l4^2 280 print "die dreiecksflaeche=";ar quant circle-a geometry problem-solved using rotation die gesuchte laenge des gleichseitigen dreiecks ist=39.6038046 die dreiecksflaeche=679.163682 > run in bbc basic sdl and hit ctrl tab to copy from the results window. you may add "@zoom%=1.4*@zoom%" at the beginning for full screen graphics
Triangle area is totally redundant, all u need is cosine theorem, cos x = 1/ sq 2, done
5:05-5:50 [AQR]=½AQ•ARsin150°= =½20•21•½=5•21=105 sq.un. 😁
@@rabotaakk-nw9nm 1/2 × base AQ × height DR and DR= AR sin 30° or 21sin 30°
Please listen carefully.
@@QuantcircleЯ обещаю очень внимательно выслушать Ваше объяснение, почему Вы применили дополнительные геометрические построения и алгебраические вычисления для формулы A=½bh, вместо того, что бы сразу применить известную формулу A=½absinα с уже готовыми данными.
@@rabotaakk-nw9nm Я сделал это для того, чтобы, если кто-то не сможет понять формулу напрямую, они смогли бы понять её через эти построения. Не каждый человек способен понять таким образом.
@Quantcircle 👍🥰
Nice solution Your last two videos on geometry solution have an different ways to solve them Keep growing
@@DhanushJoshi-u1r Thank you very much for this beautiful comment. I will make every effort to bring even better videos for you in the future.
Nice magic
@@Mggsharsauli thank you.
Linda solução! 🎉🎉🎉
@@imetroangola17 Fico muito feliz que você gostou desta solução. Continuarei me esforçando para criar conteúdos ainda melhores para você. Muito obrigado!
@Quantcircle muito grato!
❤
Could you please solve this problem with a different method? Not everyone understands this rotation method. Please if there is another way, show us.
@SamuelDonald-pr2uu Please wait for a while. I will try to solve this question using a different method, and if I find a better approach, I will reply to you.
zum beispiel x^4+1827^2=2048^2 x^2=925.405 x=30.42 es scheint aber kein rechtwinkliges dreieck zu sein
@@aksiiska9470 Die Frage bezog sich auf die Beziehung zwischen den Seiten dieses Dreiecks, daher wurde auf die Winkel nicht geachtet. Sie haben recht, dass es kein rechtwinkliges Dreieck zu sein scheint. Bitte verstehen Sie jedoch die Absicht der Frage, die die Beziehung der Seiten verdeutlichen möchte. Insgesamt sind Ihre Berechnungen absolut korrekt. Vielen Dank für diesen Kommentar!
Bravo! Bravo! 🎉🎉🎉
@@imetroangola17 Sou muito grato a você por isso 🙏
hi at least it was not a nested repeated calculation: 10 print "quant circle-not as easy as it looks-a challenging geometry problem" 20 dim x(2,2),y(2,2):l2=7:l3=5:l4=3:ym=0:sw=l4/67:goto 50 30 xa=sqr(l3^2-h^2):r=(sqr(l3^2-h^2)+sqr(l4^2-h^2))/2:l1=2*r 40 l5=2*r-xa:dgu1=sqr(l4^2-l5^2)/l2:dgu2=sqr(l2^2-l5^2)/l2:dg=dgu1+dgu2-1:return 50 h=sw:gosub 30 60 h1=h:dg1=dg:h=h+sw:if h>l4 then stop 70 h2=h:gosub 30:if dg1*dg>0 then 60 80 h=(h1+h2)/2:gosub 30:if dg1*dg>0 then h1=h else h2=h 90 if abs(dg)>1E-10 then 80:rem den tangentenpunkt berechnen 100 print "der radius=";r:xm=r:xt=sw:goto 130 110 yt=ym+sqr(r*r-(xt-xm)^2):dgu1=(xm-xt)*(2*r-xt)/r/r:dgu2=(ym-yt)*(l1-yt)/r/r 120 dg=dgu1+dgu2:return 130 gosub 110 140 xt1=xt:dg1=dg:xt=xt+sw:if xt>20*r then stop 150 xt2=xt:gosub 110:if dg1*dg>0 then 140 160 xt=(xt1+xt2)/2:gosub 110:if dg1*dg>0 then xt1=xt else xt2=xt 170 if abs(dg)>1E-10 then 160 180 masx=1200/2/r:masy=850/l1:if masx<masy then mass=masx else mass=masy 190 goto 210 200 xbu=x*mass:ybu=y*mass:return 210 x(0,0)=0:y(0,0)=0:x(0,1)=2*r:y(0,1)=0:x(0,2)=xa:y(0,2)=h 220 x(1,0)=xa:y(1,0)=h:x(1,1)=2*r:y(1,1)=l1:x(1,2)=xt:y(1,2)=yt 230 for a=0 to 1:x=x(a,0):y=y(a,0):gosub 200:xba=xbu:yba=ybu:for b=1 to 3:ib=b 240 if ib=3 then ib=0 250 x=x(a,ib):y=y(a,ib):gosub 200:xbn=xbu:ybn=ybu:goto 270 260 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 270 gosub 260:next b:next a:x=xm:y=ym:gosub 200:gcol 3:circle xbu,ybu,r*mass:gcol8 280 x=2*r:y=l1:gosub 200:xba=xbu:yba=ybu:y=0:gosub 200:xbn=xbu:ybn=ybu:gosub 260 quant circle-not as easy as it looks-a challenging geometry problem der radius=3.94440716 > run in bbc basic sdl and hit ctrl tab to copy from the results window. you may add "@zoom%=1.4*@zoom%" at the beginning for the graphics display.
💫
Very good and useful question for general knowledge 👏🏻😊
@@VirendraKumar-z4u Thank you so much for this comment! I hope to keep bringing you more useful videos like this. Your support means a lot to me!
Thank you so much for your support
I am very pleased that you liked this video. I hope you will continue watching my videos in the same way.
Amazing 😊
I'm thrilled to hear you enjoyed the video. Your support truly motivates me to keep creating more helpful content. Stay tuned for more exciting topics!
2.7959+3.7279=5.523867733
@@wasimahmad-t6c What else would you like to know from me beyond this?
(2)^2=4 180ABC/4=4.20 4.2^10 4.2^2^5 2^2.1^1^1 1^2 .1 2(ABC ➖ 2ABC+1).
i just applied the fact that in an isosceles triangle the angle bisector is intersecting the midpoint of the opposite length of the angle: 10 print "quant circle-a nice geometry question from india cat exam":l=1 20 dim x(1,5),y(1,5):x(0,2)=0:y(0,2)=0:x(0,3)=l/2:y(0,3)=0 30 x(0,4)=l:y(0,4)=0:x(0,0)=l*.5:y(0,0)=sqr(1-.5^2)*l:x(0,5)=(x(0,4)+x(0,0))/2 40 y(0,5)=(y(0,0)+y(0,4))/2:x(0,1)=x(0,0)/2:y(0,1)=y(0,5):dx=x(0,5):dy=y(0,5) 50 k=l/(2*dx+4*dy):xm=k*dx:ym=k*dy:ru=ym:print "der kreisradius ist=";ru/l;"*l":dx=l/2:dy=y(0,0) 60 x(1,0)=xm:y(1,0)=ym:for a=1 to 2:x(1,a)=x(1,a-1)+2*ru:y(1,a)=y(1,a-1):next a 70 x(1,3)=x(1,0)+ru:y(1,3)=y(1,0)+sqr(3)*ru:dl=sqr((x(1,3)-x(1,0))^2+(y(1,3)-y(1,0))^2) 80 fe=(2*ru-dl)/2/ru*100:print "der fehler=";fe;"%" 90 x(1,4)=x(1,3)+2*ru:y(1,4)=y(1,3):x(1,5)=x(1,4)-ru:y(1,5)=y(1,4)+sqr(3)*ru 100 masx=1200/l:masy=850/y(0,0):if masx<masy then mass=masx else mass=masy 110 goto 130 120 xbu=x*mass:ybu=y*mass:return 130 x=x(0,0):y=y(0,0):gosub 120:xba=xbu:yba=ybu:for a=1 to 6:ia=a:if ia=6 then ia=0 140 x=x(0,ia):y=y(0,ia):gosub 120:xbn=xbu:ybn=ybu:goto 160 150 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 160 gosub 150:next a:for a=0 to 5:x=x(1,a):y=y(1,a):gosub 120:circle xbu,ybu,ru*mass:next a quant circle-a nice geometry question from india cat exam der kreisradius ist=0.133974596*l der fehler=0% > run in bbcbasic sdl and hit ctrl tab to copy from the results window. you may add "@zoom%=1.4*@zoom%" at the beginning, just for the graphics
@@zdrastvutye Ihre Arbeit ist wunderbar, ich schätze Ihren Einsatz. Vielen Dank für Ihren Kommentar.
^=read as to the power *=read as square root QR=*(20^2 + 15^2) =*(400+225)=*625=25 Let SR=x So QS=25- x In triangle PQS, angle S =90 So, PS^2 =PQ^2 - QS^2 =(20^2) - (25 - x)^2 =400-{625 -50x+x^2) =400-625+50x- x^2 =50x -x^2 -225.....eqn1 Again in triangle PSR, angle S=90 So, PS^2=PR^2 - SR^2 =15^2 - X^2=225 -X^2....eqn2 Eqn1 & eqn2 are equal due to PS^2 SO, 50X -X^ -225 =225-X^2 50X=225+225=450 X= 450/50 = 9 SO, SR=9 QS= 25-9 =16 Now in triangle PQS PS=*(PQ^2 -QS^2) =*(20^2-16^2) =*(400-256)=*144=12 QS=16 SO area of PQS=(12×16)/2=96 Let R= radious of circle which stands in the interior of PQS triangle R=(PQ×QR×QS)/(4×area) =(20×16×12)/(4×96) )=10 Let r= radious of the circle which stands in the interior region of the triangle PSR Area of PSR =(PS×SR)/2 =(12×9)/2=54 r=(PR×SR×PS)/(4×Area ) =(15×9×12)/(4×54)=7.5 AB=R+r =10+7.5=17.5 Hence AB=17.5 Wrongly i have aplied the formula for exterior circle Hope this question will be as below In triangle PRS the circle intersects PS, SR, PR at the point m, n, o respectively Let PO=y So, RO=15-y Ro=Rn=15-y So Sn=9-(15-y)=y-6 Again po=Pm=y Sm=12-y Sm=Sn 12-y=y-6 2y=18 Y=18/2=9 Sm=r=12-y=12-9=3 In the triangle PQS the circle intersects at a, b, c to PQ, QS, PS respectively Let Pa=t Pa=Pc=t So, Sc=12-t Qa=Qb=20-t So, Sb=16-(20-t)=t-4 Sb=Sc t-4=12-t 2t=16 t=18/2=8 Sc=R=12-t=12-8=4 AB=R+r=4+3=7 Hence AB=7 Note :Draw the parallel line segment to SC from A to PS, simillarly from B to Ps with parallel to Sn( where they touch the circle are also the radious of the circle
@@ManojkantSamal but AB is not parallel to line SC or QR . Perpendicular distance of point A from line QR is 4 cm and perpendicular distance of point B from line QR is 3 cm. So you can easily conclude that line BE is parallel to QR . And in right triangle AEB because Line EB is parallel to QR and Line AC is perpendicular to line QR. Angle AEB will be 90 degrees. Here EB is equal to sum of Radii of both the incircles. ( PS and QR are tangent to both these incircles)
Calculate carefully. The smaller incircle touching line PS on a point located at line BE ( 3 cm from point S) but larger circle is touching PS at a distance of 4 cm from point S.
AB is not 7 cm because the circles are not tangent to each other. They don't touch at all. I'll show using a different method than used in video: coordinate geometry. We have radius of circle with center A = 4 cm and radius of circle with center B = 3 cm. Let PS be along y-axis, and let QR be along x-axis. Since circle with radius 3 is in 1st quadrant and tangent to both axes, it has coordinates B = (3, 3) Since circle with radius 4 is in 2nd quadrant and tangent to both axes, it has coordinates A = (−4, 4) Now we can use distance formula to find distance between points A(−4,4) and B(3,3) AB = √[(−4−3)² + (4−3)²] = √[(−7)² + (1)²] = √[49 + 1] =√(50) = 5√2 ≈ 7.07
yes it is tricky but can be solved. the repeated calculation changes the centerpoint of the circle with its known radius until the quotient "fl=" as written in line 20, is reached: 10 print "quant circle-how to solve this tricky geometry problem with 3 circles" 20 dim x(1,2),y(1,2),r(2):r(0)=2:sw=r(0)/10:fl=10/3:y(1,0)=r(0):ym=r(0):y(1,0)=ym:nr=30 30 nr=30 :goto 150 40 ys=y(1,0)+sqr(abs(r(0)^2-(xs-xm)^2)):dgu1=(xs^2+ys^2)/r(0)^2:dgu2=xs*xm/r(0)^2 50 dgu3=ys*ym/r(0)^2:dg=dgu1-dgu2-dgu3:return 60 xm=r(0)+sw:gosub 40 70 dg1=dg:xm1=xm:xm=xm+sw:if xm>20*r(0) then stop 80 xm2=xm:gosub 40:if dg1*dg>0 then 70 90 xm=(xm1+xm2)/2:gosub 40:if dg1*dg>0 then xm1=xm else xm2=xm 100 if abs(dg)>1E-10 then 90 110 return 120 gosub 60:ye=ys/xs*(xm+r(0)):lbh=sqr(xs^2+ys^2):lah=sqr((xm+r(0)-xs)^2+(ye-ys)^2) 130 lac=ye:df=lbh/lah: df=df-fl:return 140 return 150 xs=sw:gosub 120 160 xs1=xs:df1=df:xs=xs+sw:if xs>nr*r(0) then stop 170 xs2=xs:gosub 120:if df1*df>0 then 160 180 xs=(xs1+xs2)/2:gosub 120:if df1*df>0 then xs1=xs else xs2=xs 190 if abs(df)>1E-10 then 180 200 lbc=sqr((lbh+lah)^2-lac^2):lab=lbh+lah:print "lbh=";lbh:print"lah=";lah:print "lab=";lab 210 print "lbc=";lbc;"lac";lac: print xs,"%",ys 220 x(0,0)=0:y(0,0)=0:x(0,1)=lbc:x(0,2)=x(0,1):y(0,2)=ye:x(1,0)=xm 230 xmu=sw:goto 260:rem den berechneten mittelpunkt verwenden *** 240 ymu=xmu/xm*ym:ru=ymu:dgu1=(xm-xmu)^2/r(0)^2:dgu2=(ym-ymu)^2/r(0)^2:dgu3=(ru+r(0))^2/r(0)^2 250 dg=dgu1+dgu2-dgu3 :return 260 gosub 240 270 dg1=dg:xmu1=xmu:xmu=xmu+sw:xmu2=xmu:gosub 240:if dg1*dg>0 then 270 280 xmu=(xmu1+xmu2)/2:gosub 240:if dg1*dg>0 then xmu1=xmu else xmu2=xmu 290 if abs(dg)>1E-10 then 280 300 x(1,1)=xmu:y(1,1)=ymu:r(1)=ru:dx=xm-lbc:dy=ym-ye:k=sw:goto 330 310 dxk=k*dx:dyk=k*dy:xmu=lbc+dxk:ymu=ye+dyk:ru=lbc-xmu:dgu1=(xmu-xm)^2/r(0)^2 320 dgu2=(ymu-ym)^2/r(0)^2:dgu3=(ru+r(0))^2/r(0)^2:dg=dgu1+dgu2-dgu3:return 330 gosub 310 340 dg1=dg:k1=k:k=k+sw:k2=k:gosub 310:if dg1*dg>0 then 340 350 k=(k1+k2)/2:gosub 310:if dg1*dg>0 then k1=k else k2=k 360 if abs(dg)>1E-10 then 350 370 x(1,2)=xmu:y(1,2)=ymu:r(2)=ru:masx=1200/x(0,1):masy=850/y(0,2) 380 if masx<masy then mass=masx else mass=masy 390 goto 410 400 xbu=x*mass:ybu=y*mass:return 410 x=x(0,0):y=y(0,0):gosub 400:xba=xbu:yba=ybu:for a=1 to 3:ia=a:if ia=3 then ia=0 420 x=x(0,ia):y=y(0,ia):gosub 400:xbn=xbu:ybn=ybu:goto 440 430 line xba,yba,xbn,ybn:xba=xbn:yba=ybn:return 440 gosub 430:next a:for a=0 to 2:x=x(1,a):y=y(1,a):gosub 400:circle xbu,ybu,r(a)*mass:next a quant circle-how to solve this tricky geometry problem with 3 circles lbh=10 lah=3 lab=13 lbc=12lac5 9.23076923% 3.84615385 > run in bbc basic sdl and hit ctrl tab to copy from the results window. you may add "@zoom%=1.4*@zoom%" at the start.
@@zdrastvutye amazing! 👏
Nice question Your videos on geometry question Always have an another concept Your videos on geometry question always give the better experience Keep going sir 👍
@@DhanushJoshi-u1r Thank you for this comment. I hope you continue to support me by watching my upcoming videos as well.
I am glad to know this 😊
Linda resolução! 🎉🎉🎉
Muito obrigado! Fico feliz que tenha gostado da solução. O seu apoio significa muito para mim!
Thank you for your support solve this problem
@@powerofSanatandharma you are welcome 🤗
👍
Thank you so much . I'm really glad you enjoyed the video. Your support means a lot and motivates me to keep creating content.
Keep supporting the community
@@chaitanyachikki257Thank you so much for your kind words and support! I'm truly grateful to have amazing viewers like you who believe in this community. Your encouragement inspires me to keep creating valuable content. Keep staying connected!
great approach....
Thank you.
Sir BE is equal to 4√3
@@bidyutbarandas5612 provide your solution so that I can check it and then clarify the situation.
No BE is not equal to 4√3, since AB is not 7 because the circles are not tangent to each other. They don't touch at all. I'll show using a different method than used in video: coordinate geometry. We have radius of circle with center A = 4 cm and radius of circle with center B = 3 cm. Let PS be along y-axis, and let QR be along x-axis. Since circle with radius 3 is in 1st quadrant and tangent to both axes, it has coordinates B = (3, 3) Since circle with radius 4 is in 2nd quadrant and tangent to both axes, it has coordinates A = (−4, 4) Now we can use distance formula to find distance between points A(−4,4) and B(3,3) AB = √[(−4−3)² + (4−3)²] = √[(−7)² + (1)²] = √[49 + 1] =√(50) = 5√2 ≈ 7.07 And E is located 1 unit below A, so E = (−4,, 3) and the distance from B(3,3) and E(−4,3) is indeed 7
Good. Math animation sir❤
@@RAJESHWARGUPTA-b1x Thank you so much for your kind words! I'm really glad you enjoyed the math question. It’s always great to hear that my content resonates with viewers like you. Keep challenging yourself with math, and feel free to share your thoughts anytime. Happy learning!
円Aと円Bは接してないんですね
@@koun3866 この問題では、この2つの円は互いに外接していません。線分ACとBDを見てください。これらはQR線に垂直です。BEはこれら2本の線の間の距離です。また、ABはこの2つの円の中心間の距離です。小さい円は、BE上のある点でPS線に接しています。そして、大きい円は、その少し上でPS線に接しています。
まず、大きな円について話しましょう。QRとPSの両方がその接線であり、その半径は4 cmです。接点を中心Aと結ぶと、4 x 4の正方形が形成されます。つまり、大きな円が接線PSに触れる接点は、点Sから4 cmの距離にあることを意味します。同様に、小さな円が接線PSに触れる接点も、点Sから3 cmの距離にあります。この2つの円が、同じ接線PSに触れながら互いに接することはどうすれば可能でしょうか?
Muito interessante! Parabéns!
@@imetroangola17 Sou muito grato a você por este comentário.
Parabéns pelo trabalho! Linda questão!
@@imetroangola17 Muito obrigado pelo seu apoio e carinho! Fico feliz que tenha gostado do vídeo!
Nice question sir Your work on geometry question always give an better experience Keep going sir
I’m really glad the geometry video was helpful to you. Your feedback motivates me to keep creating content that makes learning enjoyable. Thanks for watching!
Nice question and thanks for support
@@powerofSanatandharma Here’s a nice response for the comment: Thank you so much! I'm glad you liked the question. Your support means a lot, and I'll keep bringing more interesting math content. Stay tuned!
Sir answer is wrong. Correct answer is 7cm. Mistake is : BE is not equal to 7.. Rather AB is equal to 7cm..
@@AdarshSuna-d2v Hello! I've actually answered the same question for Mr. Pankaj Chawda in a previous comment. Please take a look at that comment for the explanation. Let me know if you have any further questions!
*@AdarshSuna-d2v* AB is not 7 cm because the circles are not tangent to each other. They don't touch at all. I'll show using a different method than used in video: coordinate geometry. We have radius of circle with center A = 4 cm and radius of circle with center B = 3 cm. Let PS be along y-axis, and let QR be along x-axis. Since circle with radius 3 is in 1st quadrant and tangent to both axes, it has coordinates B = (3, 3) Since circle with radius 4 is in 2nd quadrant and tangent to both axes, it has coordinates A = (−4, 4) Now we can use distance formula to find distance between points A(−4,4) and B(3,3) AB = √[(−4−3)² + (4−3)²] = √[(−7)² + (1)²] = √[49 + 1] =√(50) = 5√2 ≈ 7.07
As we are given the ratio of BH to HA as 10:3, we know that the actual length of BH and HA will be 10k and 3k, with k being an as-yet unknown constant. As BH and FB are tangents to circle O that intersect at B, then by the two tangents theorem, FB = BH = 10k. Similarly, as HA and AD are tangents to circle O that intersect at A so AD = HA = 3k. As AC and CB are tangent to circle O at D and F respectively, then ∠ODC = ∠CFO = 90°, as OD and OF are radii of circle O. Since ∠DCF = 90° as well, then ∠FOD must equal 360°-3(90°) = 90°, and as OF and OD are equal in length and adjacent, quadrilateral ODCF is a square with side length of 2. The side lengths of triangle ∆ACB are thus as follows: BA = 10k+3k = 13k, AC = 3k+2, CB = 2+10k. Triangle ∆ACB: AC² + CB² = BA² (3k+2)² + (10k+2)² = (13k)² 9k² + 12k + 4 + 100k² + 40k + 4 = 169k² 109k² + 52k + 8 = 169k² 60k² - 52k - 8 = 0 15k² - 13k - 2 = 0 15k² - 15k + 2k - 2 = 0 15k(k-1) + 2(k-1) = 0 (k-1)(15k+2) = 0 k - 1 = 0 | 15k + 2 = 0 k = 1 | k = -2/15 ❌ k ≥ 0 BA = 13(1) = 13 AC = 3(1) + 2 = 5 CB = 2 + 10(1) = 12 As CB is tangent to circle Q at G, then ∠QGB = 90°, as QG is a radius of circle Q. As AC is tangent to circle P at E, then ∠AEP = 90°, as PE is a radius of circle P. As PE and OD are both perpendicular to AC and thus parallel to each other, then ∠EPA and ∠DOA are corresponding angles and thus congruent. As ∠PAE = ∠OAD, then ∆AEP and ∆ADO are similar triangles by angle-angle similarity. As the point of tangency between two circles is collinear with the two centers, then OP = 2+r₁. Triangle ∆ADO: AD² + OD² = OA² 3² + 2² = OA² OA² = 9 + 4 = 13 OA = √13 OD/OA = PE/PA 2/√13 = r₁/(√13-(2+r₁)) √13r₁ = 2(√13-2-r₁) √13r₁ = 2√13 - 4 - 2r₁ √13r₁ + 2r₁ = 2√13 - 4 r₁(√13+2) = 2√13 - 4 r₁ = (2√13-4)/(√13+2) r₁ = (2√13-4)(√13-2)/(√13+2)(√13-2) r₁ = (26-4√13-4√13+8)/(13-4) [ r₁ = (34-8√13)/9 ≈ 0.573cm ] As OF and QG are both perpendicular to CB and thus parallel to each other, then ∠BQG and ∠BOF are corresponding angles and thus congruent. As ∠GBQ = ∠FBO, then ∆QGB and ∆OFB are similar triangles by angle-angle similarity. As the point of tangency between two circles is collinear with the two centers, then OQ = 2+r₂. Triangle ∆OFB: OF² + FB² = OB² 2² + 10² = OB² OB² = 4 + 100 = 104 OB = √104 = 2√26 OF/OB = QG/QB 2/2√26 = r₂/(2√26-(2+r₂)) 1/√26 = r₂/(2√26-2-r₂) √26r₂ = 2√26 - 2 - r₂ √26r₂ + r₂ = 2√26 - 2 r₂(√26+1) = 2√26 - 2 r₂ = (2√26-2)/(√26+1) r₂ = (2√26-2)(√26-1)/(√26+1)(√26-1) r₂ = (52-2√26-2√26+2)/(26-1) [ r₂ = (54-4√26)/25 ≈ 1.344cm ]
@@quigonkenny Thank you so much for sharing your solution! I really appreciate the effort you've put in, and it's always interesting to see different approaches to solving a problem. It's great that we both arrived at the correct answer through different methods-this shows the beauty of math, where there can be multiple ways to reach the same conclusion. Keep up the great work, and feel free to share more of your ideas!
Very nice
@@powerofSanatandharma Thank you so much for your kind words! I'm glad you enjoyed the video. Your support means a lot to me
very smart thank you
@@lesliederrar9718 Thank you so much for your kind words! I'm glad you enjoyed the video. Your support means a lot to me and motivates me to create more smart and helpful content. Stay tuned for more exciting videos!
asnwer=(b) isit
@@와우-m1y Yes, your answer is absolutely correct, it's 'b'! Feel free to ask any questions or give suggestions in the future as well. I'll look forward to your lovely feedback. Thank you!
@@Quantcircle yes oo sam isit math in quiry isit
Nice question
Thank you for sharing your thoughts with me. I hope you continue watching the videos on this channel in the same way and keep supporting me.
👍
@@Mseditandtech Thank you so much for your kind words! It means the world to know that you enjoyed the video. Your support keeps me motivated to create more content! 😊 Feel free to share any suggestions or topics you’d like to see in the future. Grateful for viewers like you! 💖
Nice video sir
@@DhanushJoshi-u1r thank you.